(— || ey — -

comnfFeraenca
=025

The Case for

Graphics Programming
Using the D Language

Mike Shah | -

_——— Bl social: @MichaelShah
| Web : mshah.io

_ , ll Courses: courses.mshah.io
14:00 - 15:30 Tue, April 1, 2025 P ol (DD YouTube

—

R W . youtube.com/c/MikeShah
- : : http://tinyurl.com/mike-talks

90 minutes | Intermediate Audience

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Abstract (Which you already read :))

Talk Abstract: ‘write fast, read fast, and run fast’ is the mantra found on the D
programming language homepage (https://dlang.org/). Did you notice a word
game and graphics programmers love that is used 3 times? Fast! In this talk |
will show examples of how | have used programming techniques that
available in the D programming language to build graphics applications and
games. Throughout this talk | will showcase graphics demos in the D
language, and more generally programming language features that '‘changed'
my approach to graphics programming. The greater goal of this talk, is to
show attendees why there can be a payoff of using non-mainstream

programming languages in specific domains. After all -- why not have a
competitive advantage?

https://dlang.org/

Your Tour Guide for Today

Mike Shah

e Current Role: Teaching Faculty at Yale University

o Teach/Research: computer systems, graphics, geometry, game
engine development, and software engineering.

o Available for:
o Contract work in Gaming/Graphics Domains
= e.g.tool building, plugins, code review
o Technical training (virtual or onsite) in Modern
C++, D, and topics in Performance or Graphics APIs

Fun: Web
° un: www.mshah.io
o Guitar, running/weights, traveling, video €3 YouTube

games, and cooking are fun to talk to me about! |bes/www.youtube.com/c/MikeShan
Non-Academic Courses

courses.mshah.io

Conference Talks
http://tinyurl.com/mike-talks

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Software Engineering in the D Programming Language - A

Tour of DLang for your Competitive Advantage
Mike Shah

(@] 1-day-workshop-online

00, Saturday, 12th April 2025 - Zoom

The following hands-on training provides a tour of the essential parts of the mature and multi-paradigm
programming language D. In this workshop attendees will learn about the programming language
paradigms supported in D, core idioms, and the essential features that allow writing ‘better code’ the
default option in the D programming language. This workshop will include hands-on exercises that
enable attendees to practice as they learn during the workshop (i.e. the workshop will be broken into ~5
modules each an hour long with 45 minutes of lecture, followed by 15 minutes of practice, and then a
summary and short break before the next module). Attendees should have experience programming in
at least one language (e.g. C, C++, Java, Go, Rust, etc.), but are not required to have any D programming
language experience. Regardless if you end up using D in your daily programming or as a hobby,
attendees will leave this training better understanding idioms in concurrency, and otherwise how to think
about programming.

Technical training

Come join me April 12th online
If you enjoy today’s talk!

4

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

. Raise your hand if you have heard
of the D programming language?

. Raise your hand if you
used the D1 (2001 to ~2007) programming
language”?

. Raise your hand if you
used the D2 (2007 to now) programming
language”?

. Raise your hand if you actively
use D for some project (hobby / commercial /
etc)?

A First Impression

Let’s take a look at an

example of D code
o TI’ll give everyone a
minute to think about or
guess what this program
does

So... what does this
program do?

Pop Quiz: (’examen surprise!) (1/8)

void main()

{
import std.algorithm, std.stdio;
"Starting program".writeln;

enum a = [3, 1, 2, 4, 0 1;

static immutable b = sort(a);

pragma(msg, "Finished compilation:

", b);

10

Pop Quiz: (’examen surprise!) (2/8)

e Line3: Sort an Array at Compile-Time v your code here
o There’s a built-in standard
library (named ‘Phobos’) void main()
o There’s a module system . {

import std.algorithm, std.stdio;
"Starting program".writeln;
enum a = [3, 1, 2, 4, 0];

static immutable b = sort(a);

pragma(msg, "Finished compilation: ", b);

One of the first examples on the www.dlang.org
webpage - sorting an array -- at compile-time!

11

http://www.dlang.org

Pop Quiz: (I’examen surprise!) (3/8)

e Line3: Sort an Array at Compile-Time v your code here
o There’s a built-in standard
library (named ‘Phobos’) void main()
, {
.o LINENES B AR TS SEEm . import std.algorithm, std.stdio;
e Lineb:
o Function call using uniform "Starting program".writeln;

function call syntax (UFCS) enuna =103, 1,2, 4, 01:

static immutable b = sort(a);

pragma(msg, "Finished compilation: ", b);

One of the first examples on the www.dlang.org
webpage - sorting an array -- at compile-time!

12

http://www.dlang.org

Pop Quiz: (I’examen surprise!) (4/8)

e Line3: Sort an Array at Compile-Time v your code here
o There’s a built-in standard
library (named ‘Phobos’) void main()
) {
.o LINENES B AR TS SEEm . import std.algorithm, std.stdio;
e Lineb:
o Function call using uniform "Starting program".writeln;
. function call syntax (UFCS) enum a = [3, 1, 2. 4, 0 1;
e Line7:
o enum constant, evaluated at static immutable b = sort(a);

compile-time

pragma(msg, "Finished compilation: ", b);

One of the first examples on the www.dlang.org
webpage - sorting an array -- at compile-time!

13

http://www.dlang.org

Pop Quiz: (I’examen surprise!) (5/8)

e Line3: Sort an Array at Compile-Time v your code here
o There’s a built-in standard
library (named ‘Phobos’) void main()
, {
.o LINENES B AR TS SEEm . import std.algorithm, std.stdio;
e Lineb:
o Function call using uniform "Starting program".writeln;
. function call syntax (UFCS) enum a = [3, 1,2 4 01
e Line7:
o enum constant, evaluated at static immutable b = sort(a);
compile-time
° Line 9: pragma(msg, "Finished compilation: ", b);
o immutable static data stored }
inb

One of the first examples on the www.dlang.org
webpage - sorting an array -- at compile-time!

14

http://www.dlang.org

Pop Quiz: (I’examen surprise!) (6/8)

e Line3: Sort an Array at Compile-Time v your code here
o There’s a built-in standard
library (named ‘Phobos’) void main()
.o LINENES B AR TS SEEm . { import std.algorithm, std.stdio;
e Lineb:
o Function call using uniform "Starting program".writeln;
. function call syntax (UFCS) enuna =103, 1,2 4,01:
e Line7:
o enum constant, evaluated at static immutable b = sort(a);
compile-time
° Line 9: pragma(msg, "Finished compilation: ", b);
o immutable static data stored }
inb
e Line12:
o pragma outputs value after .
compilation (before runtime) One of the first examples on the www.dlang.org

webpage - sorting an array -- at compile-time!

15

http://www.dlang.org

Pop Quiz: (I’examen surprise!) (7/8)

° Line 7:

O

O

This is a fixed-size array.
We can slice into it
m e.g.

Sort an Array at Compile-Time v

your code here

void main()

{
m a[0..2]returns[3,1,2] import std.algorithm, std.stdio;
o Arrays (whether dynamic or . '
static) know their ‘length’ s RAFRINg JERBTAN Ml Eeilng
and store the ‘ptr’ together. enum a =[[3, 1, 2, 4, 0];
static immutable b = sort(a);
pragma(msg, "Finished compilation: ", b);
}

One of the first examples on the www.dlang.org
webpage - sorting an array -- at compile-time!

16

http://www.dlang.org

Compile-time code is runtime code

Why you might care to
look?

It's true. There are no hurdles to jump over to get things running at compile

time in D. Any compile-time function is also a runtime function and can be
D tries to execute as executed in either context. However, not all runtime functions qualify for

much as possib|e at CTFE (Compile-Time Function Evaluation).

compile-time
The fundamental requirements for CTFE eligibility are that a function must
o Andthe

) be portable, free of side effects, contain no inline assembly, and the source
COde' . 'JUSt IOOkS code must be available. Beyond that, the only thing deciding whether a
like regular code! function is evaluated during compilation vs. at run time is the context in

Compile-time execution FESEIE:!
saves the user time at
run-time -- big win!

The CTFE Documentation includes the following statement:

https://dlang.ora/bloa/2017/06/05/compile-time-s
ort-in-d/

. https://tour.dlang.org/tour/en/gems/compile-time
-function-evaluation-ctfe

In order to be executed at compile time, the function must appear in a
context where it must be so executed...

17

http://www.dlang.org
https://dlang.org/blog/2017/06/05/compile-time-sort-in-d/
https://dlang.org/blog/2017/06/05/compile-time-sort-in-d/
https://tour.dlang.org/tour/en/gems/compile-time-function-evaluation-ctfe
https://tour.dlang.org/tour/en/gems/compile-time-function-evaluation-ctfe
http://www.dlang.org

The Case for D

(By Andrei Alexandrescu)

Andrei Alexandrescu

Romanian-American software developer

(&) Moreimages

@ erdani.org

Andrei Alexandrescu is a Romanian-American C++ and D
language programmer and author. He is particularly known
for his pioneering work on policy-based design implemented
via template metaprogramming. These ideas are articulated
in his book Modern C++ Design and were first implemented
in his programming library, Loki. Wikipedia

18

The Case for DLang (1/3)

e Nearly 16 years ago Andrei |The Case for D
Alexandrescu wrote ‘The

D could be best described as a high-level systems programming language
b
Case for D

Andrei Alexandrescu is the author of Modern C++ Design and The D Programming_Language. He
can be contacted at erdani.org/.

Let's see why the D programming language is worth a serious look.

o The D language has continued

Of course, I'm not deluding myself that it's an easy task to convince you. We programmers are a

to improve on ltS Strong strange bunch in the way we form and keep language preferences. The knee-jerk reaction of a
. A . programmer when eyeing a The XYZ Programming Language book on a bookstore shelf is
foundatlons since ‘that tlme! something like, "All right. I'll give myself 30 seconds to find something I don't like about XYZ."

. . Acquiring expertise in a programming language is a long and arduous process, and satisfaction is
delayed and uncertain. Trying to find quick reasons to avoid such an endeavor is a survival
® Andrel Summarlzes DLang instinct: the stakes are high and the investment is risky, so having the ability to make a rapid
aS. negative decision early in the process can be a huge relief.
* P . That being said, learning and using a programming language can be fun. By and large, coding in
@) D Could be best descrlbed a language is fun if the language does a satisfactory job at fulfilling the principles that the coder

using it holds in high esteem. Any misalignment causes the programmer to regard the language

as a high_ level SyStemS as, for example, sloppy and insecure or self-righteous and tedious. A language can't possibly

fulfill everyone's needs and taste at the same time as many of them are contradictory, so it must

y 2 carefully commit to a few fundamental coordinates that put it on the landscape of programmin
programming language rouates, P pe of programming

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-c
ase-for-d/217801225

19

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225
https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225

At a glance D has many features: https://dlang.org/spec/spec.html

The Cas

Language Reference

Table of Contents

Introduction

Lexical
Interpolation Expression This is the specification for the D Programming Language.

Sequence
Grammar

Modules Introduction
Declarations e Lexical

Types Interpolation Expression Sequence
Properties e Grammar
Attributes e Modules

Pragmas e Declarations
Expressions e Types

This is also available as a Mobi ebook.

Statements e Properties
Arrays i

ayed and uncertain. Trying to find quick reasons to avoid such an endeavor is a survival
instinct: the stakes are high and the investment is risky, so having the ability to make a rapid
negative decision early in the process can be a huge relief.

That being said, learning and using a programming language can be fun. By and large, coding in
a language is fun if the language does a satisfactory job at fulfilling the principles that the coder
using it holds in high esteem. Any misalignment causes the programmer to regard the language
as, for example, sloppy and insecure or self-righteous and tedious. A language can't possibly
fulfill everyone's needs and taste at the same time as many of them are contradictory, so it must
carefully commit to a few fundamental coordinates that put it on the landscape of programming
languages.

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-c
ase-for-d/217801225

[1] and more here: https://dlang.org/comparison.html

20

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225
https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225
https://dlang.org/spec/spec.html
https://dlang.org/comparison.html

At a glance -- Dlang is :
A compiled language (3 freely available compilers)

(@)
@)

Extremely fast compilation with - DMD Compiler
Two additional compilers with LLVM (LDC) and GCC (GDC) backends

statically typed language
Plays well with C, C++, Obj-C

(@)
@)

Embedded C compiler - ImportC
e.g. of interoperation with C++ (Interfacing with C++)

Many modern language features:

(@)

Ranges (and foreach), Compile-Time Function Execution (CTFE), Array
slicing, lambda’s, mixins, contracts, unit testing, template constraints,
multiple memory allocation strategies, and more[1].

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-c
ase-for-d/217801225

[1] and more here: https://dlang.org/comparison.html

21

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225
https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225
https://dlang.org/spec/importc.html
https://dlang.org/spec/cpp_interface.html
https://dlang.org/comparison.html
https://dlang.org/comparison.html

My Goal Today

e Isto convince you D is the best programming language!
e (nextslide)

22

Real Goal for you Today

e ...okayIknow it is April 1st -- so that’s not quite what I feel I need to
do. (=

e My goalis for you to expand your horizon, and decide if D will give
you a competitive advantage for your project.

e Specifically today, I'll be looking at the graphics programming
domain, where I think D has personally given me an advantage in
iteration speed and performance

e Note:

o This talk is not meant to teach you graphics from scratch, but rather focus on
language features that made my life easier in the graphics domain.

23

The Case for D

as a Graphics Programmer
(By Mike Shah)

24

The Case for D for graphics programming (1/2)

1. Most of the right defaults
a. e.g.variables are initialized (or use =void to avoid .init values), const is transitive,
casts must be explicit, arrays carry ‘length’ and ‘ptr’, thread local storage, etc.
2. Faster prototyping as a result of module system and excellent DMD

compiler
a. One can leverage the DMD frontend with LLVM and GCC backend for
optimizations and targeting more platforms
3. Can generate fast code!

a. SIMD vector extensions available https://dlang.org/spec/simd.html
b. Multitasking support available [introduction here]:
1. Threads, fibers, etc.

4. It’s fun to write code in DLang (my personal bias)

25

https://dlang.org/spec/simd.html
https://www.youtube.com/watch?v=NWIU5wn1F1I

| will show you! :)

> (it T erel:

4. It’s fun to write code in DLang (my personal bias)

26

https://dlang.org/spec/simd.html
https://www.youtube.com/watch?v=NWIU5wn1F1I

My Case for D: Ray Tracing (non-real time graphics) (1/2)

e My case for D starts in 2022 when I built a ray tracerin D in a

weekend (based on Peter Shirley’s book)

o The productivity of the language was encouraging as someone with a good
background in C++

DConf '22: Ray Tracing in (Less Than) One Weekend with DLang - Mike Shah

1.6K views + 2 years ago
® Thed Language Foundation

Peter Shirley's book 'Ray Tracing in One Weekend' has been a brilliant introduction to implementing ray tracers for beginners

=== 33 chapters Title and Introduction | Overview | A definition of ray tracing | The ray tracing algorithm v

https://www.youtube.com/watch?v=nCIB8df7q2g 27

https://www.youtube.com/watch?v=nCIB8df7q2g
https://raytracing.github.io/books/RayTracingInOneWeekend.html

My Case for D: Ray Tracing (non-real time graphics) (2/2)

e [wasencouraged enough to then give a second talk a few months later in

2023, for which I really started to learn to use the D language more fully
o So let me give you a highlight of some of my early insights to give you more of a taste of
the D language.

DConf Online 22 - Engineering a Ray Tracer on the Next Weekend with DLang

253 views * 2 years ago
© TheD Language Foundation

This is a continuation of Mike Shah's Dconf '22 talk on building a ray tracer in (less than) one weekend. What this talk show...
a .

= 21 chapters Title and Introduction | A few software engineering things (a recap of the first talk) |.. v
EY

perform performance and in a way that's
what we're going to be talking about

https://www.youtu be.com/watch?v:MFhTRiobeU 28

https://www.youtube.com/watch?v=MFhTRiobWfU

Raytraced Graphics

(Non-interactive, the stuff they generally use in the movies)

What is a raytracer? Ray Casting

As a quick introduction, a raytracer is
where we ‘cast’ a ray from some location e
and see if it intersects with another
Ob j e Ct . Virtual Screen Objects
Typically we do this (at least) once
per-pixel

o Rays may also bounce multiple time (to create

reflections and shadows)

You can otherwise see an example of a
raytracer progressively building the
scene for each scanline on the
bottom-right

Ray Tracing - Analogy

e The analogy is exactly like

pointing a laser pointer

o Qur laser pointer hits the

closest surface that it hits
against

31

Interfaces in D for ‘ray intersection’

e Dlang supports interfaces, : ool e D v
which allow us to derive a
class from common ,
interface, where we must A S TR
implement the member
functions of the interface.

Hit(R . . HitR d
o abstract classes and regular o i e il
classes also exist. o interface Hittable{
m abstract classes are similar Hit(...);
to interfaces, but allow }

member variables. T
e Interfaces provides a nice |
‘contract’ when class Sphere : Hittable{
implementing some hittable } P craie % .
surface in a raytracer f ,

32

https://dlang.org/spec/interface.html
https://dlang.org/spec/class.html#abstract

D class versus struct

e In D class and struct represent

reference and value types

o Classes are (by default) heap allocated
o Classes allow for polymorphism
Structs are (by default) stack allocated
o No default constructor for ‘struct’

e I *like* that these keywords have
different meaning in the design of
my programs.

O

Clean Template Syntax (my opinion)

e Creating templated types b,

are a breeze in D for any 4

struct, class, function, or 3 SEruct Veetar ()
6 T[3] elements;

type we create 7'}

Simply use parentheses

lias Vec3i = Vector3!int

(111’16 5) where the type 1S alias Vec3f = Vector3!floa
o Lines 10-12 demonstrate 2 alias Vec3d = Vector3!dout

with V the type 1
Using the ‘alias’ keyword at 15 alias Point3f = Typedef! (Vec3f);
global or local scopes gives 16
us another name.
Line 15 adds further power 6 Wacst v
if we want some ‘semantic’ 20 writeln(v);
meaning of a Point being 22 Point3f p;
different than a Vector 3 writeln(p);
m (Even though the data 24
is the same)

I main(){

assert(lis(p = v),

Operator Overload

Vec3 opBinary(string op)(double
Vec3 result = Vec3(; ;
(ap==""")4
e D allows operator result[0] = e[0] * rhs;
. result[1] = e[1] * rhs;
overloading for member resultf2] = ef2] * rhs:
functions tae Hlba=tT%1
o e.g.‘opBinary’ for binary result[0] = e[0] / rhs;
. . . result[1] = e[1] / rhs;
operat%ons 1nyo1v1ng Fesult[2] = 21 7 Fhe:
operations with the type on }
the left, and type on the (op=="4")4
. result[0] = e[0] + rhs;
right result[1] = e[1] + rhs;
result[2] = e[2] + rhs;
}

(op=="="31
result[0] = e[0] - rhs;
result[1] = e[1] - rhs;
result[2] = e[2] - rhs;

}
result;

A better Overload

Vec3 opBinary(op)(rhs)
Vec3 result = Vec3(: g)i
e Using D’s mixin feature, (, op,
the equivalent code can be E £ b
generated at compile-time P
for each template. result;
o The ‘string op’ is already the h

template parameter for the
operating being used.

So instead of having to
compare, simply use the

mixin.

No comparisons, no branches
used, only generate code
needed (e.g. + or -), and
otherwise future-proof your
code if you add other
operators.

Templates for the win!

Vec3 opBinary(op)(rhs)
Vec3 result = Vec3(i :)5
e Avoiding branches in this E o ;
particular case sped up (. op,);
my raytracer result;
o (From 0.769 seconds to r
0.587seconds) ike:2022_dconf_online$ dmd -g ./src/*.d -of=prog

The code features fewer ike:2022_dconf_online$ time ./prog
. . File: ./output/image.ppm written.
branches, 1s easier to
real Om0.587s
understand, support§ e b
more operators, and is sys Om0.005s
arguably easier to read.

1 std.typecons;

° 2 std.stdio;
Template Constraints - |
5 t Vector3(T){
§ T[3] elements;
Note: éx typeof (this) opBinary(string op)(double rhs)

o Maybe we don’t want to allow
‘any’ operator with opBinary
Observe line ‘10’ we can add
template constraints to otherwise
check which symbols are
allowed.

Other features shown:
o line 12:

if(op== |] op=="/")

to result = typeof(this)([0.0,0.0,0.0]);

3 mixin(e
4 mixin(» 0P,
mixin(¢ TR
return result;

10
1
1Z
1
1
13
16
y ko

m ‘auto’ for deducing the type s
and generic programming 20

ctypeof(this)a for plaCIHg 21 alias Vec3f = Vector3!floc B~

jche templated type 23 void main(){
instance. 24

25 Vec3f v = Vec3f([i y 1¥;
For structs, constructors 26

are automatically created AP ;
for us if one is not defined. s
30 writeln(v);

31 }

~e we wu

Vec3 and Unit Test

D has built-in
‘unittest’ blocks to
otherwise increase

my confidence in the fi 63

correctness of my
code.

Here is another
example of a Vec3

type

{
Vec3 vi1

Vec3 v2

assert(vil.
assert(v2.
ssert(vil.

Vec3 v3 =

“t(v3.

Vec3 v4 =

2rt(v4.

Vec3 v5 =
3ssert(vs.

Vec3

Vec3(2,3,4);
Vec3(1,0,0);

IsUnitVector()) &
IsUnitVector() ==)3
ToUnitVector().IsuUnitVector() ==

Vec3(0.5, ’);
ToUnitVector().IsUnitVector() ==

Vec3(; :);
TouUnitVector().IsUnitVector() ==

Vec3(, ;3-1)3
lounitVector().IsUnitVector() ==

VeC3(' ’ ’);

.ToUnitVector().IsUnitVector() ==

-profile []

e Note: D has a built in profiler, garbage collection profiler, and code

coverage tools that just make it feel complete!
o These are great instrumentation tools to help you understand your performance!

-g ./src/*.d -of=prog|&& ./prog && display ./output/image.ppm

Timer frequency unknown, Times are in Megaticks

Tree Func Per
Time Time Call

4888100 51585 51369 0 double utility.GenerateRandomDouble()
13419031 12011 10287 0] vec3.Vec3 vec3.Vec3.opBinary!("-").opB
12866509 9584 6947 0 double vec3.DotProduct(const(vec3.Vec3
10279720 34363 6823 0 bool sphere.Sphere.Hit(ray.Ray, double
6814276 5462 4708 0 vec3.Vec3 vec3.Vec3.opBinary!("+").opBi
35995879 4336 3747 0 const bool vec3.Vec3.IsZero()

6498806 3946 3466 vec3.Vec3 vec3.Vec3.opBinaryRight!("*")
2570181 73278 2032 vec3.Vec3 main.CastRay(ray.Ray, sphere.
20559440 4289 1867 const double vec3.Vec3.LengthSquared()
84971600 1543 1543 pure nothrow @nogc @trusted bool core.

https://dlang.org/dmd-linux.html#switches

-profile=gc

-profile=gc|./src/*.d -of=prog

e Using D’s profiler we can see how many heap allocations took
place, and it turns out at some point I was doing many with Vec3!

bytes allocated,fallocations, type, function, file:line
2594630832 54054809 vec3.Vec3 vec3.Vec3.opBinary!"-".opBinary ./src/vec3.d:143
1316028336 27417257 vec3.Vec3 vec3.Vec3.opBinary!"+".opBinary ./src/vec3.d:143

1255141248 26148776 vec3.Vec3 vec3.Vec3.opBinaryRight!"*" .opBinaryRight ./src/vec3.d:200
662529280 10352020 sphere.HitRecord main.CastRay ./src/main.d:23

662463680 10350995 sphere.HitRecord sphere.HittableList.Hit ./src/sphere.d:44

431901600 8997950 vec3.Vec3 main.CastRay ./src/main.d:47

41

-profile=gc (After making a Vec3 a struct)

dnd -g ./src/*.d -of=prog

e Rerunning again (this time, no profile collected)
e We’re again, about twice as fast again!

File: ./output/image.ppm written.jlFile: ./output/image.ppm written.

real Om11.126s real Om7.115s

Sys Om0.936s Sys mO. S
Before After

42

std.parallelism [

D offers several forms of
concurrency as well as
parallelism.
For our ray tracer, we truly
want parallelism, as we are
able to cast rays in an order
independent task of
casting rays

o (i.e. We cast ~1 ray per pixel in

our screen, and we write to

one location in memory at a
time.)

std.parallelism

stable v

Jump to: defaultPoolThreads - parallel - scopedTask - Task - task - TaskPool -
taskPool - totalCPUs

std.parallelismimplements high-level primitives for SMP parallelism. These in-
clude parallel foreach, parallel reduce, parallel eager map, pipelining and
future/promise parallelism. std.parallelismis recommended when the same op-
eration is to be executed in parallel on different data, or when a function is to be exe-
cuted in a background thread and its result returned to a well-defined main thread.
For communication between arbitrary threads, see std.concurrency.

std.parallelismis based on the concept of a Task. A Task is an object that repre-
sents the fundamental unit of work in this library and may be executed in parallel
with any other Task. Using Task directly allows programming with a
future/promise paradigm. All other supported parallelism paradigms (parallel fore-
ach, map, reduce, pipelining) represent an additional level of abstraction over Task.
They automatically create one or more Task objects, or closely related types that are
conceptually identical but not part of the public API

43

https://dlang.org/phobos/std_parallelism.html

For-loop to parallel task

e Highlighted below is the conversion from a serial O(n?) loop, to a

parallel computation using Tasks built in Dlang.
o Note: iota gives us the range of values that we are going to iterate on in parallel.
o Note: See Ali’s Dconf 22 talk for a guide to iota:

; cam.GetScreenHeight.iota.parallel){
(x; cam.GetScreenHeight().iota.parallel){

Vec3 pixelColor = Vec3(

https://www.youtube.com/watch?v=gwUcngTmKhg

real time (versus user time)

e Measuring the time now, we 1le: ./output/image.ppm written.
need to somewhat rely on the =] Om0. 760s
‘real’ time when running 0m11.324s
parallel threads. Om0.004s

o ‘user’ time represents the total cpu
time -- and that’s a sum of all of the
cpus running in parallel.

o Before converting to parallel, we
have now gone from 5.9 seconds to
less than a second by adding
“parallel’ in our loops to spawn
threads automatically

45

Release Build

e D by default offers safety (e.g. default initialized values, bounds
checking on arrays, thread local variables, and more!), but we can

toggle some of those options on and off as needed

o Note: There are additional memory safety annotations (@safe, @trusted, @system)
that I will not cover during this talk.

e Toggling the compiler flags from https://dlang.org/dmd-linux.html

we can do a release build for more performance with DMD
o (And using GDC or LDC compiler backends provides even faster executables.)

mike:2022_dconf_online$ dmd -0 -release -inline -boundscheck=off ./src/*.d -of=prog
mike:2022_dconf_online$ time ./prog
File: ./output/image.ppm written.

Om0.282s
Om3.901s
Om0.000s

https://dlang.org/dmd-linux.html

An example of < 24 hours of work,
building a math library and data-driven
raytracer in D.

My Case for D

e So at this point, I was pretty encouraged by D, enough that I
decided I would start teaching D (at Northeastern University and
now Yale University) in Spring of 2023 in Software Engineering to

start

o (If you watch the second half of the talk -- you also hear directly from the
students their unfiltered thoughts on using and learning D in the course)

2. C++is a massiv
a. Ithas its own pri

b. Students who fa

i. This leave

ii. Students ¢

3. The original rea:

university
a. (..and myown g

1:01:19

DConf '23--A Semester at University: Teaching/Learning Software
Engineering in D--Mike Shah et al.

655 views - 1 year ago
© TheD Language Foundation

In January of 2023, Mike Shah excitedly showed a group of over 110 university students that D is the 46th most popular ..

cC

- 28 chapters Teaching with D: Introduction | The software engineering course | Problems in Mike's. v

https://www.youtube.com/watch?v=V2YwTIIMEeU

oU

https://www.youtube.com/watch?v=V2YwTIIMEeU

C++ and DLang as complementary languages

e At ACCU last year, I found that writing D code improved my C++ knowledge quite
a bit as well.

e One key thing was that my ‘D’ programming had a much faster iteration time -- so
I wanted to take on the challenge of real-time graphics programming in D next

How DLang Improves my Modern C++ and Vice Versa - Mike Shah - ACCU
2024

2.9K views * 9 months ago
ACCU Conference

How DLang Improves my Modern C++ and Vice Versa - Mike Shah - ACCU 2024 — The D programming language (DLang) is ...

23:22 (Dconf 22) o Follow on talk: https:/ youtube.com/watch?v=MFhTRiobWIU (Dconf Online 22) Github or Dub ...

; L d 1'20:02\

https://www.youtube.com/watch?v=CnKsOak0DHU (Note: The talk is not about Dlang vs C++ as the thumbnail suggests!) o

https://www.youtube.com/watch?v=CnKsOak0DHU

Real-Time Graphics Programming in D

(For things like games and simulation)

52

What is needed for real-time graphics programming? (1/2)

Generally speaking:

1. A systems programming language for
graphics programming
a. Many graphics APIs (OpenGL, Vulkan, etc.) are C-based APIs
b. D talks with C very easily (See the interfacing guide), and it is often merely a
matter of using a binding to expose the C library functions to a programmer.

1. D also provides a way to transition C code
(https://dlang.org/spec/importc.html) to D code (C++ and Obj-C are also
works in progress)

ii. See some of the example guides here: https://dlang.org/articles/ctod.html

2. We need a math library, or otherwise the ability to make a good
math library

a. D itself provides operating overloading as we have previously seen to make this
convenient.

53

https://dlang.org/spec/interfaceToC.html
https://dlang.org/spec/importc.html
https://dlang.org/articles/ctod.html

What is needed for real-time graphics programming? (2/2)

But first -- as some inspiration, | wondered if anyone using
D for serious real-time graphics work (the answer was of
course yes).

It's sort of a confidence booster to see someone else has
used a tool to build something -- so here are some
examples

54

https://dlang.org/spec/interfaceToC.html
https://dlang.org/spec/importc.html
https://dlang.org/articles/ctod.html

D Graphics Projects

(More projects found at my FOSDEM 2024 talk here:
https://www.youtube.com/watch?v=ylL.aUsmLr9so)

First Look at:

Dlang

“Starting program".write

enum a = [3, 1 2 4 0]

tatic immutable b = sort(a‘

FOSDEM Rh

pragma(msg, "“F

[Programming Languages] Episode 19 - First Impression - dlang
(FOSDEM 2024 Talk)

673 views * 3 weeks ago

g Mike Shah

=Lesson Description: In this lesson | present one of my favorite languages - in fact I'm breaking the rules a bit -

- dlang! As many ...

55

https://www.youtube.com/watch?v=yLaUsmLr9so

Utilized the D Programming Language

AN UdllliT 1Yol o 111 U

e It’s also worth noting that D has
been used in AAA Commercial

Games
o Ethan Watson has a wonderful
presentation describing that experience
o Link to talk:
https:/www.gdcvault.com/play/102384
3/D-Using-an-Emerging-Language
e Talk Abstract: con you use D to make games? Yes.

Has it been used in a major release? It has now. But what
benefits does it have over C++? |s it ready for mass use? Does
treating code as data with a traditional C++ engine work?
This talk will cover Remedy's usage of the D programming
language in Quantum Break and also provide some details
on where we want to take usage of it in the future.

Quantum Break -- Game

Ask a question at goo.gl/slides/92v98z

Could you show some more examples of what
is simplier to d than c++?

»

Viktor Sehr

g

,,,,,,,,,, Ix o=

https://m.media-amazon.com/images/M/MV5BOThjOWRhN2QtYmIxMy0OMGE3LTk5ZWMtY2ZkMzIOMGY 1ZTM1XkEyXkFacGdeQX

VYMTYxMzY10Da@. V1 _.jpa

56

https://www.gdcvault.com/play/1023843/D-Using-an-Emerging-Language
https://www.gdcvault.com/play/1023843/D-Using-an-Emerging-Language
https://m.media-amazon.com/images/M/MV5BOThjOWRhN2QtYmIxMy00MGE3LTk5ZWMtY2ZkMzI0MGY1ZTM1XkEyXkFqcGdeQXVyMTYxMzY1ODg@._V1_.jpg
https://m.media-amazon.com/images/M/MV5BOThjOWRhN2QtYmIxMy00MGE3LTk5ZWMtY2ZkMzI0MGY1ZTM1XkEyXkFqcGdeQXVyMTYxMzY1ODg@._V1_.jpg

Built in the D Programming Language Dagon -- Game Engine

e Website with games and tutorials: htips://gecko0307.qgithub.io/dagon/

e Github or Dub Repository: https://github.com/gecko0307/dagon | https://code.dlang.org/packages/dagon
57

https://gecko0307.github.io/dagon/
https://github.com/gecko0307/dagon
https://code.dlang.org/packages/dagon

Built in the D Programming Language Dash -- Game Engine

Website with games: https://circularstudios.com/
Github or Dub Repository: https://github.com/Circular-Studios/Dash
Forum Post: https://forum.dlang.org/thread/gnagymkehjvopwxwvwig@forum.dlang.org

https://circularstudios.com/
https://github.com/Circular-Studios/Dash
https://forum.dlang.org/thread/qnaqymkehjvopwxwvwig@forum.dlang.org

=[0Il l=R D R felel=Tnalnallale M R=Tale[VETe[cl Hipreme Engine -- Game Engine

e Github or Dub Repository: https://github.com/MrcSnm/HipremeEngine
e DConf 2023 Talk: DConf '23 -- Hipreme Engine: Bringing D Everywhere -- Marcelo Mancini

https://github.com/MrcSnm/HipremeEngine
https://www.youtube.com/watch?v=jgygD7B_CPk

=TV RG RV AL EInInlC R VE[N The Art of Reflections -- Game

Steam Page: https://store.steampowered.com/app/2290770/The_Art_of Reflection/
D Forums 2025: https://forum.dlang.org/post/bwixpoolebphvgrbbzcr@forum.dlang.org
o Ultilizing Direct3D 11 and PhysX

https://store.steampowered.com/app/2290770/The_Art_of_Reflection/
https://forum.dlang.org/post/bwlxpoolebphvgrbbzcr@forum.dlang.org

Built in the D Programming Language §=8 i) gt e iR 1 a A UIE e

Time: 22.50 us

Time: 22.50 us

Figure 5.7: Static temperature and mass fraction of nitrogen atoms in the flow field
from the chemical nonequilibrium simulation.

e \Website: https://gdtk.ugcloud.net/ and https://gdtk.ugcloud.net/pdfs/eilmer-user-quide.pdf
e Github or Dub Repository: https://github.com/gdtk-ua/gdtk

https://gdtk.uqcloud.net/
https://gdtk.uqcloud.net/pdfs/eilmer-user-guide.pdf
https://github.com/gdtk-uq/gdtk

Demo 1
First Triangle

62

Graphics Programming Crash Course

e In order to get a triangle drawing using our

a GPU we need a few things:
o 1. A window
o 2. To setup OpenGL (or your preferred graphics API)
o 3. Upload data from the CPU to GPU (i.e. the
graphics pipeline

63

Graphics Programming Crash Course - Window Setup (1/2)

e The easiest way to setup a window is to use a cross-platform

windowing library like glfw or SDL
o Mike Parker’s bindbc-glfw or bindbc-sdl are great packages to get started
o https://code.dlang.org/packages/bindbc-glfw
o These packages are ‘bindings’ that otherwise expose the C functions calls from
windowing libraries to D code

bindbc-gliw EX

Static & dynamic bindings to GLFW3, compatible with BetterC, @nogc, and nothrow.

To use this package, run the following command in your project's root directory:

dub add bindbc-glfw £ 64

https://code.dlang.org/packages/bindbc-glfw

You can avoid any ‘language

bindings’ if you like as I show here (©){

In general, you should use the bindbc struck Gl Binaniter:

or other bindings however, as that SERIEL CLRmIn o

way youw'll get a complete set of T LAY CONTEXT VERSTON MINOR

. GLFW OPENGL PROFILE =
functions. GLFW OPENGL CORE PROFILE =

But as you can see, talking to C code 0 FROPENGE EORNARD GUMEAT =
is as simple as either including the ,

binding, or providing a function or alias GLFWglproe = vaid

type declaration, and then simply AL .

liIlliiIlgg in the lik)rgirsf GLFWw1ndow* glfwCreateWindow(int,int,const char*, GLFWmonitor*, GLFWwindow*);
void glfwDestroyWindow (GLFWw1ndow *w1nd0w),
o e.g.-L-1g1fw3 void glfwTerminate();
- -1, -- passes a ﬂag to the linker int glfwWindowShouldClose (GLFWwindow *window);
. X . void glfwPollEvents ();
m -lglfw3 -- brings in the library int glfwWindowShouldClose(GLFWwindow * window);
i3 3 void glfwSwapBuffers (GLFWwindow *window);

" Addltlonally’ you may spe.crfy the void glfwMakeContextCurrent (GLFWwindow *window);

path to where to find the library void glfwWindowHint (int hint, int value);

file

. GLFWglproc glfwGetProcAddress (const char *procname);
e eg. -L-L/usr/local/lib

Graphics Programming Crash Course - API Setup (1/4)

e For graphics APIs, then you need to typically ‘load’ the functions or

extensions.
o For OpenGL, you can use a tool like ‘glad’ to generate the C-function declarations
for each function that your hardware supports.
m https://glad.david.de/

Glad

Multi-Language GL/GLES/EGL/GLX/WGL Loader-Generator based on the official specs.

Language Specification
D v OpenGL v
API Profile

gl Version 4.1 v Core

https://glad.dav1d.de/

€ %:Y o) VIR oY=y &=V 1101110 s V=l Now as we're seeing our first D code --

glad.gl.all;
- glad.gl. loader;

[) o

writeln(

!

let me mention the ‘D language’

advantage.

e D has a module system -- no need
to mess with .h or .hpp files (in
fact, there’s no preprocessor)

e Compiling with individual
modules allows the DMD
compiler to work super fast!

if(1glad.qgl.loader.gladLoadGL ()){

Graphics Programming (EEENCERIEYIE LI EEVERIRCY S

std.stdio;

sdl abstraction;
opengl abstraction;
bindbc.sdl;
bindbc.opengl;

with the ‘C-style way’ (which |
don'’t), then you can use the
‘bindbc’ loaders to simply load
OpenGL and your windowing
library of choice

(Jj Globals g;
13

14 struct Globals{

15 Shader basicShader;
Object3D obj;
GLFWwindow* window;
int screenWidth =
int screenHeight = 4

F(IoLfuInit()){
writeln(
}

glfwWindowHint (GLFW_CONTEXT_VERSION_MAJOR,4);
glfwWindowHint (GLFW_CONTEXT_VERSION_MINOR,1);
glfwWindowHint (GLFW_OPENGL_PROFILE,GLFW_OPENGL_CORE_PROFILE);

glfwWindowHint (GLFW_OPENGL_FORWARD_COMPAT,GL_TRUE) ;

g.window = glfwCreateWindow(g.screenWidth,g.screenHeight,
glfwMakeContextCurrent(g.window) ;

// Setup extensions
if(!'glad.gl.loader.gladLoadGL()){
In("To [

Quality of life improvements

Modules generally allow you to avoid
worrying about the order you declare
functions.

There’s also ‘module level constructors’ that
are called before main.

o This can be clearly utilized if you have
some initialization code -- like setting
up a graphics API prior to its use

m ‘shared static this’ means that
block of code is called once ever
(even amongst many threads) --
and this again is called before
main() in lexicographical order

69

Graphics Pipelines - High Level Abstraction

Application Stage

e We now have OpenGL functions loaded (using
glad), and a window setup (using glfw with our C
binding) Geometry

e We are now ready to start doing some graphics
programming using the OpenGL API

Rasterization and

Pixel Processing

Graphics Pipelines - Application Stage

e At the application stage, this

is our main loop
o We also will ‘send’ geometric
data at this stage from CPU to
the GPU
o The application stage otherwise
is where all the ‘cpu’ work is
completed:
m FileI/O
m cpumemory allocation
m Handling input

Application Stage

import std.stdio;

void input(){

}

void update(){
}

void render(){

}

void main(){

({

)
input();
update()
render()

Geometry

Rasterization and
Pixel Processing

.
’
.
’

Graphics Pipelines - Geometry Stage

At the geometry stage,

we are now on the GPU

o Data that has been sent
to the GPU from the CPU
is being assembled into
primitives

o Primitives may also be
transformed (e.g. rotated,
scaled, or translated)

Vertices ‘

Vertex shader

Primitive assembly

Application Stage

Geometry

Rasterization and

Pixel Processing

Graphics Pipelines - Rasterization

Application Stage

At this stage, we
represent our

geometric shapes (e.g. Geometry

triangles) as discrete

pixels.

We also color in those A N -

pixels based on their ¢ ~ BEEEE | REBEPZEWET) ETe
\ Baai Pixel Processing

color and transparency | &

Graphics Pipelines - Display

Application Stage

e At the final stage you display the

‘frame’ that you have created.

o This is stored in something known as a Geometry
‘framebuffer’ that at the least stores the
colors of your pixels.

Rasterization and

Pixel Processing

Displaying a Triangle (1/5)

void Triangle(){

const GLfloat[] mVertexData =
[

e Todraw a triangle, we
1 ' ' '
use OpenGL to upload (nsg, nertexData. length);
data from the CPU to glGenVertexArrays(l, &g.mVAO);
glBindVertexArray(g.mVAO);
the GPU ,
o For those who have done SLBndBur rer(GL_ARRAY BULFER, g.0B0);
. . glBufferData(GL ARRAY BUFFER, mVertexData.length* GLfloat.sizeof, mVertexData.ptr, GL STATIC DRAW);
graphics programming
-= thiS COde iS near].y the glEﬁableVertexAttribArray()i
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, GLfloat.sizeof*6,
same as any C or C++
. . . glEnableVertexAttribArray(1);
tutorial you will find glVertexAttribPointer(1, 3, GL FLOAT, GL_FALSE, GLfloat.sizeof*s, (GLvoid*) (GLfloat.sizeof*3));

m (i.e.all of the
OpenGL functions

glBindVertexArray(0);

glDisableVertexAttribArray(0);
H

are the Same) glDisableVertexAttribArray(

(msg,vertexData.length); Void Triangle(){

conét'GLfloaft] mVertexData =

One small change from C or | [EEEE
C++ is this line above.
o D’s Compile-Time : s i3
Function Execution TR |
(CTFE) and general e A
introspection capabilities :

ngithérfefokéy(g.mVAO)ﬁ

giGénBuffefé(i &é.mVBO);'V; . 4

can be useful for g\BindBuffer(GL ARRAY BUFFER, g.mVBO);

glBufferData(GL ARRAY BUFFER, mVertexData.length* GLfloat.sizeof, mVertexData.ptr, GL STATIC DRAW);

catching bugs at ,
(:()rT1F)I|EB-tIrT]€3] V gt52?$é§X$£$igé§§;iZ¢[r?y(,)éL_FLOAT, GL_FALSE, GLfloat.sizeof*
The pragma | stuck in here is 14¢
to confirm at compile-time | o et PR BRERE O
have the right amount of data. | RN lC
o Arrays are also ‘bounds 35 slbisablevertexitiribArray(1),
checked’ for safety (can ’
be turned off if needed)

Attribute #1
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL FALSE, GLfloat.sizeof*6, (GLvoid*) (GLfloat.sizeof*3))

https://wiki.dlang.org/Compile-time_vs._compile-time
https://wiki.dlang.org/Compile-time_vs._compile-time

(msg,vertexData.length); Cloid Triangle(){

conét'GLfloaft] mVertexData =

See this example below when | B g P

| did not populate color data : . B8 4
properly : ! Luef,

msg, mVertexData.length);I

DConf Online 2024 x I

glGéﬁVeftexArré&s(;»&g.mVAé);ﬂr N
ngiﬁdVérfefokéy(g.mVAO);
glGénBuffefé(‘; &g.mVBO);'

glBindBuffer(GL_ARRAY_BUFFER, g.mVBO);

glBufferData(GL ARRAY BUFFER, mVertexData.length* GLfloat.sizeof, mVertexData.ptr, GL STATIC DRAW);

glEnébléVéFtekAttribArray()5
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, GLfloat.sizeof*6, (void*)0)

Attribute #1
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL FALSE, GLfloat.sizeof*6, (GLvoid*) (GLfloat.sizeof*3))

151 glBindVertexArray(0); D
Example of a ‘mistake’ | made in preparation of the demo 12 // Di e any att "_._,:,z s we opened in our Vertex Attribute Arrr
1 10t want to hem open.

giDiéableVértexAttribAFray(5;k

glDisableVertexAttribArray(1);

e ‘static asserts’ can also be placed L,
to further write code more solid

code.

https://dlang.org/spec/version.html#static-assert

vertexData.length* GL FLOAT.size,

The enum ‘GL_FLOAT’ above is actually
an ‘integer’ type in the OpenGL API
o The ‘float’ type we actually want is
the ‘alias’ to GLfloat shown in the
code
o We could use a static assert at
compile-time with
GLfloat.sizeof to ensure it
meets our size requirements
Luckily however, D’s basic types have
predictable fixed sizes [table]

type size

bool, byte, ubyte, char 8-bit

short, ushort, wchar 16-bit
int, uint, dchar 32-bit
long, ulong 64-bit
Floating point types:
type size

float 32-bit
double 64-bit

real >= 64-bit (generally 64-bit, but 80-bit on Intel x86 32-bit)

4 Triangle(){

gonét'GLfloaft]VmVertexData =

[

g lBIiave

glGénBuffefs(i &é.ﬁVBO); B

glBindBuffer(GL_ARRAY_BUFFER, g.mVBO);
glBufferData(GL ARRAY BUFFER, mVertexData.length

glEnabléVeFtekAttribArray()5

HGLfloat.sizeofl] mVertexData.ptr, GL STATIC DRAW);

glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, GLfloat.sizeof*6,

#1

glEnéBléVertexAttribArray()5

glVertexAttribPointer(1, 3, GL_FLOAT, GL FALSE, GLfloat.sizeof*6, (GLvoid*) (GLfloat.sizeof*3))

ngindVertéXArféy(');" 7

ngisabieVertexAtfribArray()
glDisableVertexAttribArray(1)

’
’

https://dlang.org/library/std/meta/alias.html
https://dlang.org/spec/version.html#static-assert
https://tour.dlang.org/tour/en/basics/basic-types

Displaying a Triangle (5/5)
Other quality of life features include things like explicit casting using the

‘cast’ keyword

(GL_FLOAT)*6,
(voidx*) D fset

o (C on the left, and D on the right)

GL FLOAT, Typ

GL FALSE, Is the data

51zeof(GL FLOAT)*6,
(void*) 0ffset

DLIUDUT TSI \UL_ARNAT_ooe

ytL
ngufferData(GL ARRAY BUFFER, My \ertexData.ptr, GL STATIC DRAW);

glEnableVeFtexAttribArray(A
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, GLfloat.sizeof*6,

glEnébléVertexAttribArray()5
glVertexAttribPointer(1, 3, GL_FLOAT, GL FALSE, GLfloat.sizeof* GLvoid*) (GLfloat.sizeof*

U
ngindVertexArray();

nglsableVertexAttr1bArray)
glDisableVertexAttribArray(1);

79

Graphics Pipelines - Shaders

Application Stage

e Now in order to actually do something, we have

to create a graphics pipeline
o This is done by processing our geometry in a GPU Geometry
program called a ‘vertex’ or shader.
o We then also write one other GPU program called a
‘fragment’ or ‘pixel’ shader

Rasterization and

Pixel Processing

Shader Code (1/2)

e To the right is all the shader

code needed

o (Error checking separated out
into one other function)

oid BuildBasicShader(){

GLuint vertexShader;
GLuint fragmentShader;

vertexShader = glCreateShader(GL_VERTEX SHADER);
fragmentShader= glCreateShader(GL FRAGMENT SHADER);

string vertexSource = import()i
string fragmentSource = import(¥

const r* vertSource = vertexSource.ptr;
nghaderSource(vertexshader, , &ertSource,)i
glCompileShader(vertexShader);
CheckShaderError(vertexShader) ;

r* fragSource = fragmentSource.ptr;
nghaderSource(fragmentShader, , &fragSource,)
glCompileShader (fragmentShader) ;
CheckShaderError(fragmentShader) ;

g.programObject = glCreateProgram();

glAttachShader(g.programObject,vertexShader);
glAttachShader(g.programObject, fragmentShader) ;
glLinkProgram(g.programObject);

glvalidateProgram(g.programObject);

glDetachShader(g.programObject, vertexShader) ;
ngaﬂachShader(g.programObject,fragmentShader)

glDeleteShader (vertexShader) ;
glDeleteShader (fragmentShader) ;

e One interesting thing for this
demo is | did not bother to write
any code to load the shaders
from a file on disk.

o Instead, | just imported the
code (similar to C23’s
upcoming #embed) feature.

e The advantage here is:

o 1. primarily simplicity for
small programs [more on
working with C strings]

2. If | do want to embed
code as data, it’s relatively
straightforward if | do not
want to go to disk

// Create a basic shader

‘; void BuildBasicShader(){

// Compile our shaders
GLuint vertexShader;
GLuint fragmentShader;

// Pipeline with vertex and fragment shader
vertexShader = glCreateShader(GL VERTEX_SHADER) ;
fragmentShader= glCreateShader(GL_FRAGMENT SHADER);

string vertexSource = import()5
string fragmentSource = import()

// Compile vertex shader

const char* vertSource = vertexSource.ptr;
glShaderSource(vertexShader, 1, &vertSource,)i
glCompileShader(vertexShader);
CheckShaderError(vertexShader) ;

// Compile fragment shader
const char* fragSource = fragmentSource.ptr;
glShaderSource(fragmentShader, 1, &fragSource,)

glCompileShader(fragmentShader);
CheckShaderError(fragmentShader) ;

// Create shader pipeline

g.programObject = glCreateProgram();

our two shader p
er this the equivalel
¢ executable fil

glAttachShader(g programOb]ect vertexShader) ;
glAttachShader(g.programObject, fragmentShader) ;
glLinkProgram(g.programObject);

two .cpp files, and linking them into

/ Validate our program
glValldateProgram(g.programObject);

”/ Once our final pr Object has been created, we can
// detach and then d our individual swaders.

glDetachShader(g. programObJect vertexShader) ;

ngcIachShader(g programObJect fragmentShader)

// Delete the individual shaders once we are done

ngeleteShader(vertexShader);

glDeleteShader (fragmentShader) ;

https://dlang.org/blog/2021/05/24/interfacing-d-with-c-strings-part-one/
https://dlang.org/blog/2021/05/24/interfacing-d-with-c-strings-part-one/

Demo 2
Objects

DConf Online 2024

83

Parsing Structured Data > g

If we want to draw
something more
interesting than
triangles, we will load
that data from a file.

To the right -- is the
entire parser for the
.0bj file.

void OBJModel(string filepath)j

float[] vertices;
float[] normals;
uint[] faces;

auto f = File(filepath);
(line ; f.byLine){

(line.startsWith()){
line.splitter() .array.remove(0).each!((e) { vertices~= parse!float(e);});
writeln(line.splitter().array);

(line.startsWith()){
line.splitter().array.remove(0).each!((e) { normals ~= parse!float(e);});
writeln(line.splitter().array);

(line.startsWith()){
auto face = line.splitter() .array.remove(0);
(indice; face){
auto component = indice.splitter() .array;
(component[0]!=""){
int idx = (parse!int(component[0]) - 1) * 3;
mVertexData~= [vertices[idx], vertices[idx+1], vertices[idx+2]];
}
(component[2]!=""){
int idx= (parse!int(component[2]) -) ¥ 32
mVertexData ~= [normals[idx+0], normals[idx+1], normals[idx+2]];

Parsing Structured Data

Observe where uniform
function call syntax
(UFCS) really shines
allowing us to right
concise and readable
code.

void OBJModel(string filepath)f

float[]
float[]

vertices;
normals;

uint[] faces;

auto f = File(filepath);

foreach(line ; f.byLine){

if (il

.remove(0).each!((e) { vertices~= parse!float(e);});

.array);

lse if(line.startsWith("vn ")){
line.splitter(" ").array.remove(0).each!((e) { normals ~= parse!float(e);});

writeln(line.splitter(" ").array);

lse if(line.startsWith("f ")){

auto face = line.splitter(" ").array.remove(0);
foreach(indice; face){
auto component = indice.splitter("/").array;
if(component[0]!=""){
int idx = (parse!int(component[0]) - 1) * 3;
mVertexData~= [vertices[idx], vertices[idx+1], vertices[idx+2]];
}
if(component[2]!=""){
int idx= (parse!int(component[2]) - 1) * 3;
mVertexData ~= [normals[idx+0], normals[idx+1], normals[idx+2]];

DConf online 2024

e On your own time you can zoom in and contrast the C++ (left) 3
versus the D (right) code.
When simple, both read about the same -- but as
complexity goes up, the D code remains about the same
complexity.

37 void Model: :load0BJ (){ void OBJModel(STHS
8 // 1.) Scan the data float[] vertices;
std::string line; float[] normals;
std::ifstream myFile(fname.c str()); uint[] faces;
if(myFile.is open()){
hile(getline(myFile,line)){
if(line[0]=="f"){
std::string temp = myutil::replaceString(line,"f ","");
temp = myutil::replaceString(temp,"/","a");
temp = myutil::replaceString(temp,"a"," ");
std::vector<int> lst = myutil::vectorStringToInt(myutil::split(temp,” "));
// Create a face
// Subtract 1 because obj's are 1's based T .
triangleList.push back((unsigned int)lst[0]-1); se 1f(line.startswith("vn ")){
triangleList.push back((unsigned int)lst[2]-1); line.splitter().array.remove(0).each!((e) { normals ~= parse!float(e);})
)

triangleList.push back((unsigned int)lst[4]-1); writeln(line.splitter(" ").array);

auto f = File(filepath);
fo (line ; f.byLine){

if(line.startswith("v ")){
line.splitter(" ").array.remove(0).each!((e) { vertices~= parse!float(e);});
writeln(line.splitter(" ").array);

zh;& if(line[0]=="v"){ if(line.startswith("f ")){ ‘
if(line[1]=="n"){ auto face = line.splitter(" ").array.remove(0)

std::vector<float> temp = myutil::vectorStringToFloat(myutil::split(line," ")); fo indice; face){ g i
normalList.push_back(Normal(temp[O],temp[1],temp[2])); 39t° component = }pdlce.splltter(/").array;
Yelsef it (component[0]!=""){ .

- - [; i i ; wonyy. int idx = (parse!int(component[0]) - 1) * 3
3§€£éxﬁizgrszlgaEZCE?T$loaT¥$Z;;ié¥??torstr1ngToFloat(myutll..spllt(llne, i mVertexData~= [vertices[idx], vertices[idx+1], vertices[idx+2]];
vertexList.push_back((float)temp[1]);
vertexList.push_back((float)temp[2]);
// Also push in some colors
vertexList.push_back(0.97);
vertexList.push_back(0.97);
vertexList.push back(0.9

if(component[2]!=""){
int idx= (parse!int(component[2]) - 1) * 3;
mVertexData ~= [normals[idx+0], normals[idx+1], normals[idx+2]];

e It remains a future experiment -- but | think with D’s built-in
concurrency (std.concurrency) | could probably speed this up

quite a bit.

o It's an open challenge to myself (and anyone else) to see

if you can build the fastest .obj parser.

3 ‘ Mike Shah, Ph.D. @MichaelShah - Dec 3, 2023

¢ This little chunk of #dlang trivially handles faces in both instances of having
or missing texture data (i.e. v/vt/vn or v//vn data). There's probably edge
cases, but little things like this in the standard library are quite nice.

phics

(line.startsWith()4
face = line.splitter(
writeln(face);
(indice; face){
component = indice.splitter(

).array.remove(0);

).array;

O1 n Q ihi 121 [
{3 ‘ Mike Shah, Ph.D. @MichaelShah - Dec 3, 2023
$ It's nothing too complicated, but just satisfying sometimes to see less
code, more features, and more maintainable code. Makes programming
fun! & (asit should be!)

O1 n Q2 ihi 138 N &
Mike Shah, Ph.D. @MichaelShah - Dec 3, 2023

It's not the current goal, but probably also worth mentioning this file can be
'chunked' and parallelized for handling multiple .obj files. Might be worth
experiments later on.

RIP https://twitter.com/MichaelShah/status/1731522845191057919

Q)
g

I

T = File(filepath);
(line ; f.byLine){

(line.startsWith(A
line.splitter(" ").array.remove(0).each!((e) { vertices~= parse!float(e);});
writeln(line.splitter().array);

(line.startsWith(N A{
line.splitter() .array.remove(0).each!((e) { normals ~= parse!float(e);});
writeln(line.splitter().array);

(line.startsWith(A
auto face = line.splitter(
(indice; face){
auto component = indice.splitter(
(component[0]!=""){
int idx = (parse!int(component[0]) -) = 35
mVertexData~= [vertices[idx], vertices[idx+1], vertices[idx+2]];

) .array.remove(0);

).array;

¥
(component[2]!=""){
int idx= (parse!int(component[2]) - 1) * 3;
mVertexData ~= [normals[idx+0], normals[idx+1], normals[idx+2]];

87

https://dlang.org/phobos/std_concurrency.html
https://twitter.com/MichaelShah/status/1731522845191057919

Vertices:
Parsing OBJ Files (1/2) ¥ Pofuts:
Faces:
Materials:
e A .obj (3D Object File Format) file looks Wi
something like on the right L e
v -0.5 -8.5 0.5
e We have geometry dzilta at the top g T R
We then have potentially 1 or more ol it vy
materials and/or objects group on the e R B
bottom v 0.5 0.5 -0.5
v 8.5 9.5 9.5
Point/Line/Face list
usemtl Default
£432.1
t£2831
3762
re T34
584,11
BT 8BS
See DConf 2024 Online talk for how short the parsing code can be! 2 Eqd o File

HOO OO

What’s neat is you can actually
parallelize this process (where it makes
sense on large enough files!)

So if your artists are throwing lots of
geometry and textures at you, you can
parse the top half first -- then

@)

Every time you hit ‘usemt!’ you can kickstart
the process of creating a ‘chunk’ of a 3D object,
or otherwise parsing the material file or loading
the image files
It’s become a little bit of a hobby project to see
how fast I can parse these .obj files -- stay
tuned!

m l.e.Caldera Data Set from Call of Duty will

begin investigation soon.

—h =h —h —h —h —h = H* C AR e) HH o HoH B HH

H

1

Vertex list

ohWOUN
Uk BN

of file

Vertices:
Points:
Lines:
Faces:
Materials:

HOO OO

https://blog.activision.com/content/atvi/activision/atvi-touchui/web/en_gb/blog/activision/2024/activision-releases-call-of-duty-warzone-caldera-data-set

Anyways... with a little bit more code, | was able to extend my
parser to handle .obj files that contain multiple models and

materials.

o A mix of functional and object-oriented paradigms made

this quite nice!

https://twitter.com/MichaelShah/status/1731522845191057919

DConf online 2024 o

{ path){
filepath = path;
ito f = File(filepath);

1t objNum = -1;
(line ; f.byLine){

(line.startsWith("#")){

(line.startsWith(NH{
objects.length = objects.length+1;
objects[++objNum].name = line.splitter() .array.remove(0)[0].idup;

(line.startsWith(I
materials.length += 1;
st name = line.splitter(" ").array.remove(0)[06].idup;
1s[$- material(path,name);

(line.startsWith(DA
line.splitter().array.remove(0).each!((e) { objects[objNum].vertices~= parse!float(e);});

(line.startsWith(N
line.splitter().array.remove(0).each!((e) { objects[objNum].normals ~= parse!float(e);});

(line.startsWith(DAL
line.splitter().array.remove(0).each!((e) { objects[objNum].textureCoordinates ~= parse!float(e);})|

(line.startsWith(N
face = line.splitter().array.remove(0);

(indice; face){
o component = indice.splitter("/").array;

(component[0] !=
objects[$-1].flattened data ~= objects[objNum].vertices[parse!int(component[0])];

(component[1]!=
objects[$-1]1.flattened data ~= objects[objNum].textureCoordinates[parse!int(c nent[11)];

(component[2]!=""){
objects[$-1].flattened data ~= objects[objNum].normals[parse!int(component[2])];

90

https://twitter.com/MichaelShah/status/1731522845191057919

Parsing Structured Data

The other thing to note -- is that
complexity often arises with the many
variations of 3D data.

o A 3D model can contain vertices or
a number of other attributes such
as texture coordinates, vertex
normals, or other primitives.

-~

v

v

v

v

vt
vt
vt
vt
vn
vn
vn
vn
vp
vp
vp
vp

O P OO O O OO U U U U U g 0 O

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.210000
.000000
.000000
.500000

[S o B <o T 75 I x> F o b o [o}

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.590000
.000000
.000000
.500000

L S T o S R > i = R oo F o RN e S o= Rl oo [av]

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

https://paulbourke.net/dataformats/obj/

91

https://paulbourke.net/dataformats/obj/

auto data = FlexibleVertexFormat! (Vertex, TextureCoordinate,Normal3D)();
auto data2 = FlexibleVertexFormat! (float, float, float)();

e With D’s metaprogramming capabilities,

you can generate the Varlatlons you struct FlexibleVertexFormat(T...){
// Generate the member functions based
need for your geometry data_ // on the template arguments

// "i" is a counter and appended to provide unique names
// to each generated variable
import std.conv;
static foreach(i,arg; T){
" "~arg.stringof~to!string(i)~";");
}

string Generate(){
pragma(msg, " ");

static foreach (i, m; FlexibleVertexFormat.tupleof) {
// enum name = FlexibleVertexFormat.tupleof;

//alias typeof(m) type;

pragma(msg, typeof(m));

pragma(msg,m.stringof);

pragma(msg,m.sizeof);

//writef (" (%s) %s\n", type.stringof, name);

}

pragma(msg,’

https://paulbourke.net/dataformats/obj/

With D’s metaprogramming capabilities,
you can generate the variations you
need for your geometry data.

©)

©)

This could also include setting up

the various layouts needed for

passing data to OpenGL

Observe the the right two different

layouts

m \Why write this error prone

boilerplate, when we could
otherwise generate it?

float, float, float) ();

| GoEEEors

auto data = FlexibleVertexFormat! (Vertex, TextureCoordinate,Normal3D)();
auto data2 = FlexibleVertexFormat! (

// Vertex Arrays Object (VAO) Setup
glGenVertexArrays(1, &mVAO);

// We bind (i.e. select) to the Vertex Array Object (VAO) that we want to work withn
glBindVertexArray (mVAO) ;

// Vertex Buffer Object (VBO) creation

glGenBuffers(1, &mVBO);

glBindBuffer(GL_ARRAY BUFFER, mVBO);

glBufferData(GL_ARRAY_BUFFER, mVertexData.length* GLfloat.sizeof, mVertexData.ptr, GL_STATIC_DRAW);

// Vertex attributes

// Atribute #0

glEnableVertexAttribArray(0);

glVertexAttribPointer(®, 3, GL_FLOAT, GL_FALSE, GLfloat.sizeof*6, cast(void*)0);

// Attribute #1
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, GLfloat.sizeof*6, cast(GLvoid*)(GLfloat.sizeof*3));

// Unbind our currently bound Vertex Array Object
glBindVertexArray(0);

// Disable any attributes we opened in our Vertex Attribute Arrray,
// as we do not want to leave them open
glDisableVertexAttribArray(0);

glDisableVertexAttribArray(1)

void make32(){

// Vertex Arrays Object (VAO) Setup
glGenVertexArrays(1, &mVAO);
// We bind (i.e. select) to the Vertex Array Object (VAO) that we want to work withn

glBindVertexArray(mVAO) ;

// Vertex Buffer Object (VBO) creation

glGenBuffers(1, &mVBO);

glBindBuffer(GL_ARRAY_BUFFER, mVBO);

glBufferData(GL_ARRAY BUFFER, mVertexData.length* GLfloat.sizeof, mVertexData.ptr, GL STATIC_DRAW);

// Vertex attributes

// Atribute #0

glEnableVertexAttribArray(0);

glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, GLfloat.sizeof*5, cast(void*)0);

// Attribute #1
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, GLfloat.sizeof*5, cast(GLvoid*)(GLfloat.sizeof*3));

// Unbind our currently bound Vertex Array Object
glBindVertexArray(0);

// Disable any attributes we opened in our Vertex Attribute Arrray,
// as we do not want to leave them open
glDisableVertexAttribArray(0);

glDisableVertexAttribArray(1);

https://paulbourke.net/dataformats/obj/

Parsing Structured Data > g

Here is an example of using a ‘SetVertexAttributes’ that is templated and builds
the code based off of a struct passed in.

This generates the correct layout for a mesh given:
o SetVertexAttributes!VertexFormat3F2F();

Pro Tip: Don’t be afraid to introduce a new ‘scope’ with {}’s in your static foreach
loops if needed.

t VertexFormat3F2F{
t[3] aPosition;

| SetVertexAttributes(T)(){ float[2] aTextureCoord;

ixin(,T.tupleof.length,
ixin();

(idx, m; T.tupleof) {
,idx,)3
,1idx, ,m.sizeof/1 .sizeof, ,T.sizeof,
if(idx+1 < T.tupleof.length){
xin(,idx+1, nddX, ,m.sizeof/float.sizeof,)5

Demo 3
Render Targets

onf Online 2024

95

Multiple Render Targets (1/2)

What the acute watcher
will observe is that the
last two demos are
almost exactly the

same

o The difference is that this
final demo renders to an
offscreen texture, before
rendering the object

Renderpass
#1

Renderpass
#2

Renderpass

Final image is composed
of the ‘data’ from other
intermediate renderings.

Often we defer expensive
calculations to the end to
only compute them once
(e.g. deferred rendering)

Multiple Render Targets (2/2)

e Thereis actually
nothing D specific here Re”d;{pass
-- this is just a function
of the API Renderpass
e And that’s exactly my #2
point -- if you’ve seen it
done in other Renderpass
languages with
graphics APIs, you can Final image is composed
do the same work with of the ‘data’ from other
D, and take advantage intermediate renderings.

of D’s productivity.

Often we defer expensive
calculations to the end to
only compute them once
(e.g. deferred rendering)

RenderDoc (a GPU Profiler) (1/2)

e For game and graphics
programming, the same GPU
tools (e.g. Renderdoc) have
worked just fine for me in D
as other toolstacks (e.g. C++)

o These GPU Profilers are very
valuable for capturing a ‘memory
snapshot’ of what’s been |
allocated on the GPU

e Other tools like ‘pert’ for CPU
profiling also work well with
D. https://renderdoc.org/builds

o *I also like reminding folks of the

builtin profiler in D which is
handy.)

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

98

https://renderdoc.org/builds

Within a tool like
Renderdoc, you can
inspect the geometry just

as you normally would --
o Again it’s the same OpenGL,
Vulkan, etc. function calls.
o If you have prior
programming experience in
these APIs, the experience
transfers directly over.

Eile_Window _Tool

is_telp

project_2024.09.19_06.50.17_frame2002.rdc - RenderDoc v1.34

{imaline - Frame #2002 5
e Jo s 10 — 25 30 35 20 a5 50 55 m o5 70 75 50 o5 50 o5 100 105
[+ Colour Pass #1 (1 Targets + Depth) i 1 @
Usage for Backbuffer Color:Reads (A), Writes (A), Read/Write (AA), and Clears (&)
A A A A A \ A A A A A A A A
g 3
= snlw | (EX oxture vewer |8 Ppelie state |3 wesh viewer [Lounch Applcation X |3 Resaurce inspector X |3 project D 99221 X
Contros | & B & B A
Controls| £~ & Sync Views 1 ~ |Row Offset[0___Pinstance |- view,
 Fiter [sactiond] & settings & Help [E 4 I L B - i
i VS input VS Output
& ~ Colour Pass #1 (1 Targets + Depth) = ’jm Tmox i Eni vertemornats Al = T
D) [Name 15|/ . 1 [S TS
 Frame #200 2 o 4
o Capture start 2 -0IcAG0 R L0 3113 WL 0656 9.9600 I 1 12716 1502158 | 1603514 | 16.2020 ¢
1104 v Colour Pass #1 (1 Targets + Depth) o 5357 SRlie eend 0:0025 o Iz 2 12683 157 1b.0247 | 160916 |
6 fcnicor ~~20,00000, 70000, 070000, oo Dot = <10 o.2002 0.3 0.9747 a I3 5 S E e o B
gloranarays(2) 7
o . 211 s oo LED o |l 4 12229 1628552 | 16029 | 16220 |
glDradrays(25056) 0:1/05% S0 015 o) o |ls 5 1.23902 132792 1seess2 | 16232 €
gloranamays(17748) 0.36615___ 0.00248 0.1381 IR . o B e R

glDrawArays(1440)
giDrawarays(144)
giDrawarays(696)
glDrawArays(2736)
glDrawArays(16560)
giDrawarays(192)
gIDrawArays(6756)
glDrawArays(2304)

Tisow

Tesmson |

2 7 [control|

o glorawamays(33822)
2 alDrawarrays(a)

7 alDrawAays(62574)

a0 glDrawamays(1aa)

n gloranArays(14331)

o alDrawArrays(7503)

2 glDrawirays(se2)

% gloranamays(as7e)

Prinspector

&p

> ram(Program 915°)

> rmMatrxéfv(Program 9167 Tue, fioati16])
>1s gluniformMatrixafu(Program 91 , Tue, float{16])
>16 glunfomatrixefu(Program 9147, True, float{16)
> 17 glBindVertexArray(Vertex Array 945°)

18 I FrTET

|

Callsiack
Fe oee

I
aQ

e

.s"‘
LR
S

Y4V,

2
i

& project 2024.09.19_06.50.17. rame2002.rdc loaded. No problems detected.

99

Working with Geometry Challenge

e What is perhaps interesting in
this scene is that it may appear
to the user that there are only

‘two’ pieces of geometry.

o the ‘bunny’ (glowing fun colors)

o The building -- itself is just one file,
but made up of many ‘chunks’ of
other 3D data

o next slide to see closer

OBJ File Format [

Same screenshot as
before, just slightly
larger

Again showing that in
order to sift through
the many ‘chunks’ of

data in one file .obj I
had to parse it and
separate out the data.

https://en.wikipedia.org/wiki/Wavefront_.obj_file

Demo 4
Graphics Engine

Quick Demo of some objects

e So here’s a little capture of a

scene I’'m working on
o There's A little bit of lighting, and
a few models loaded, and about
260,000 triangles to draw the
scene.

m It’s a purposefully
‘unoptimized set of art
assets’ to stress the system

o Thisis the classic ‘Sponza’ scene
used in graphics with the classic
‘Stanford Bunny’ usually as
benchmarks

e This was just a small
hackathon in a few days
work!

103

Graphics Engine Design

Working Backwards a Bit

104

Structure of a Game (1/2)

void Run(){

1 (mGameRunning)
e So moving away from the & ks sl ol
graphics stuff for a moment,
the infrastructure for these R

(mGameRunning.paused){

projects is pretty neat at the

‘core game loop’
. cpy s (callback ; mGameFrameCallbacks){
o Basically it’s just an callback.frameStarted();

input/update/render function }
o Ilike to separate that out to InputFunc();
: UpdateFunc();
another function RendarFuncl):
(AdvanceFrame()) for more

control (callback ; mGameFrameCallbacks){
callback. frameEnded() ;
}

}

105

Of coursein a
game/graphics application
you may want more power
and make the system more
dynamic

It becomes relatively easy
to have some ‘interface’

that you can write to

o This is where ‘callbacks’
come in, and I can hook into
the system to do whatever is
needed.
Note: Writing your own
events to some FIFO queue is
another strategy

GameFrameCallBack{
frameStarted();
frameEnded();

PrintFrameCallback : GameFrameCallBack{
std.stdio;
0O{}
0O}
frameStarted(){
writeln(

frameEnded () {
writeln(

Laultuwvaln. iragmcowarl s

}

InputFunc();
UpdateFunc();
RenderFunc();

(callback ; mGameFrameCallbacks){
callback. frameEnded() ;

} }

/e added

Rapid Iteration Time Matters A lot (Blooper Reel)

e In graphics you encounter all sorts of strange errors
o So fast build times matter!

e Compiling and building primarily on DMD
o LDC2 and GDC also build quite fast!

222222222

N Al -
e AR

107

Hot Reloading Shaders (GPU)

For graphic shaders (separate compiled programs that execute on
the GPU) -- hot reloading is fairly standard to help improve
iteration time

Hot reload: Ability to recompile a portion of the program while the

program is still running
o https://antongerdelan.net/opengl/shader hot reload.html

108

https://antongerdelan.net/opengl/shader_hot_reload.html

Hot Reload (CPU Side) (1/2)

What you can do on the GPU, you
can of course do on the CPU

I prototyped a little system to
recompile and rebuild individual

modules on the fly

o Effectively allows me to use D as my
scripting language for compiled code
and maximum performance

In D we have a great option,
because I can recompile very fast
using DMD -- also have the
option to use the GDC or LDC
compilers otherwise to generate
optimized code to reload.

void* RebuiidAndRéload(air;wc modulename) {
1g dfilename = modulename~
1g sharedlibfilenamepath = ~modulename~

writeln(,dfilename);
writeln(,sharedlibfilenamepath);

auto dmd = execute([, dfilename,

lenamepath,

1);

Hot reload with shared libraries

109

So where this became handy
was in the little ‘callback’

system I had
I could trigger a RebuildAndReload
and add (or remove) callbacks to my
system to change behavior without
having to stop.

o D’s compile times are more than fast
enough for this small project -- butI
like speed!

I know there have also been
previous efforts with LDC2 with
@dynamicCompile traits

o These features are certainly

appreciated, and perhaps worth
taking a further look at.

void* RebuildAndReload(string modulename){
string dfilename = modulename~
ring sharedlibfilenamepath = ~modulename~
writeln(
writeln(

,dfilename);
,sharedlibfilenamepath);

suto dmd = execute([, dfilename,

lenamépath,

1);

110

unittests for games

void Run(){

1 (mGameRunning) {
e Depending on how you % i
}
structure your game loop, you §
can push each update to a 010 Advancerrane()(
frame into some sort of queue T i i e
structure.
o Game/Graphics events can then be e e
played in a unittest to simulate the }
game. InputFunc();

UpdateFunc();
RenderFunc();

o Thisis a good ideal!

o Languages that have built-in
unitteSting benefit quite a bit from (callback ; mGameFrameCallbacks){
this! callback.frameEnded();

}
}

111

Common Game / Graphics Concerns

112

Other “big things” - Dlang and GC

e People are afraid of Garbage Collection

O

But you get memory safety effectively for
free.
Allocation is just as fast as with ‘new’ or
‘malloc’
m The scan/pause is the part that
probably needs work on the allocator.
You don’t have to use the garbage collector
(as previously shown)
It looks like high powered C++ game engines
have portions that are collected
m Maybe someone can respond to my
tweet (Is it a GC, reference counted,
arena -- help me if you know!)
See more on dlang garbage collection:
https://dlang.org/blog/the-gc-series/

@ Mike Shah, Ph.D.

I'm curious to learn more about unreal engines garbage collector from
anyone who has experience (unrealcommunity.wiki/garbage-collec...). How
often does it cause a problem? Do Unreal developers actively try to avoid
it? Do folks know their is a collector their for UObject?

#gamedev #cpp

Garbage Collection | Unreal Engine Community Wiki

https://twitter.com/MichaelShah/status/1736695501259415873

113

https://dlang.org/blog/the-gc-series/
https://twitter.com/MichaelShah/status/1736695501259415873

Garbage Collection in Unreal Engine

https://www.tomlooman

.com/unreal-engine-cpp
-guide/

It’s amazing how many
developers do not know
that Unreal Engine has
Garbage Collection
available as a memory

management strategy
o Ideally, just make sure this
does not happen in the
‘hot’ part of your code
m (lLe.allocate
everything ahead of
time)

Garbage Collection (Memory Management)

Unreal Engine has a built-in garbage collection that greatly reduces our need to manually manage object lifetime. You'll still need to take
some steps to ensure this goes smoothly, but it's easier than you'd think. Garbage collection occurs every 60 seconds by default and will
clean up all unreferenced objects.

When calling MyActor->DestroyActor () , the Actor will be removed from the world and prepared to be cleared from memory. To
properly manage ‘reference counting’ and memory you should add UPROPERTY () to pointersinyour C++.I'll discuss that more in the
section below.

It may take some time before GC kicks in and actually deletes the memory/object. You may run into this when using UMG and
GetAllWidgetsOfClass . When removing a Widget from the Viewport, it will remain in memory and is still returned by that function
until GC kicks in and has verified all references are cleared

It's important to be mindful of how many objects you are creating and deleting at runtime as Garbage Collection can easily eat up alarge
chunk of your frame time and cause stuttering during gameplay. There are concepts such as Object Pooling to consider.

114

https://www.tomlooman.com/unreal-engine-cpp-guide/
https://www.tomlooman.com/unreal-engine-cpp-guide/
https://www.tomlooman.com/unreal-engine-cpp-guide/

Runtime Polymorphism without classes

e With a little bit of cleverness, I am

doing something for my callback tardy - runtime polymorphism without inheritance

system similar to the tardy project. o oom
o (Thanks Atila!)

e Then I can basically use only structs What?

for everything :) kil GG
o Atila has a nice project here I got some U T
ideas from!)
alias Transformer = Polymorphic!ITransformer;
e My interest is wanting to keep ine xforn(rransforner ©)
flexibility of polymorphism, but e
within the betterC subset. e 4) s sure const < return 5 1 51 1
o betterC is a really neat part of the D '
ecosystem - top notch for portabﬂity Stru;rﬁtPh’IZ%sgorm(int i) @safe pure const { return i + 1; }
and/or embedded systems }
https://dlang.org/spec/betterc.html s (XtorM(Trans forsr(AdSR (20 == S);

assert(xform(Transformer (Adder(3))) == 6);

https://wiki.dlang.org/Generating WebA
ssembly with LDC https://code.dlang.org/packages/tardy s

https://dlang.org/spec/betterc.html
https://wiki.dlang.org/Generating_WebAssembly_with_LDC
https://wiki.dlang.org/Generating_WebAssembly_with_LDC
https://code.dlang.org/packages/tardy

betterC

e If youdon’t want the Better C
language run-time and
standard library, you can
use the ‘betterC’ mode to
disable them.

BetterC is a subset of D that doesn't depend on the D runtime library,
only the C runtime library.

https://dlang.ora/spec/betterc.html

mike@system76-pc:~/Talks/2025/accu$ dmd -betterC -vasm betterC.d
main:
int main(){ 0000: 55 push RBP
core.stdc.stdio; 0001: 48 8B mov RBP,RSP
0004: 48 83 10 sub RSP, 010h
0008: C7 45 05 00 00 00 mov dword ptr -8[RBP],5
000f: B8 07 00 00 mov EAX,7

0014: 89 45 mov -8[RBP],EAX

0017: 48 8D EC: EF FF EF lea RDI, [OFFFFFFFCh] [RIP]

001le: 31 Co xor EAX, EAX

0020: E8 00 00 00 call LO

0025: 8B 45 mov EAX, -8[RBP]

0028: C9 leave

0029: C3 ret 116

https://dlang.org/spec/betterc.html

A Few Other Things Handy Things (1/4)

e Post condition and ‘invariant’ have been useful constructs in my
code for early exit

o e.g.
m Checking for NaN and ensure we are always in a good state after vector
operations.
m Anytime I am creating unit Vectors (and I do so frequently) -- it’s good to not
divide by 0!

o https://dlang.org/spec/contracts.html

117

https://dlang.org/spec/contracts.html

e Easy to template code
o Able to make function templates to eliminate branches in code (i.e. which shader
type to compile at run-time
m Instead make a templated function
m Also can apply a ‘template constraint’ to avoid illegal types from being
created
e Enforced at compile-time, again so you don’t have to pay the cost if you
compile your shaders at run-time.

118

e In many places where I have enums in OpenGL, I can template them

away -- often making my codebase more robust.

o Code can be self-documenting for what ‘enum’ types are legal
o (i.e. Use a function as a template constraint to check valid enums)

*/
GLuint CompileShader(GLuint type)(char[] source)
if(type == GL_VERTEX_SHADER || type == GL_FRAGMENT_SHADER)

if(type == GL_VERTEX_SHADER){
writeln("ERROR: GL_VERTEX_SHADER compilation failed!\n", errorMessages, "\n");
writeln(failed:", source);

Yelse if(type == GL_FRAGMENT_SHADER){
writeln("ERROR: GL_FRAGMENT_SHADER compilation failed!\n", errorMessages, "\n");
writeln(failed:", source);

writeln("ERROR: "~to!string(type)~" compilation failed!\n", errorMessages, "\n");
writeln(" failed:", source);

Associative arrays are
built-in to the D
language

It’s quite common for
me to map a ‘string’ to
an ‘id’ so that I can refer

to things in a readable
manner in my code (and
print better error
messages!).

5 Pipeline{
GLuint[string] sPipeline;

PipelineUse(string name){

GLint id = PipelineCheckValidName (name) ;

if(glIsProgram(id) == GL FALSE){
writeln(~name~
writeln(,Pipeline.sPipeline[na
writeln(, Pipeline.sPipeline.
assert (0,);

glUseProgram(Pipeline.sPipeline[name]);

Learning More About the D Language

Further Understanding the Case for Dlang

e In 2020the ACM’s HiStOl’y Origins of the D Programming Language

of Programming WALTER BRIGHT, The D Language Foundation, USA

ANDREI ALEXANDRESCU, The D Language Foundation, USA
Languages (HOPL) had an MICHAEL PARKER, The D Language Foundation, USA

art]-Cle pub IIShed by Shepherd: Roberto Ierusalimschy, PUC-Rio, Brazil
Walter, Andrei, and Mil{e As its name suggests, the initial motivation for the D programming language was to improve on C and C++

while keeping their spirit. The D language was to preserve the efficiency, low-level access, and Algol-style

P arl{e Y to unde Y St an d the syntax of those languages. The areas D set out to improve focused initially on rapid development, convenience,

. . and simplifying the syntax without hampering expressiveness.
origins of the language
o Iwould encourage D https://dl.acm.org/doi//10.1145/3386323

programmers and

newcomers to read the

article which motivates the

language and the ‘why’

behind its design decision.

122

https://dl.acm.org/doi/abs/10.1145/3386323

Further resources and training materials

e Tons of talks by others (Games, graphics, servers, etc.)
o https://wiki.dlang.org/Videos#Tutorials
e My ‘Graphics Related’ talks on Ray Tracers
o DConf '22: Ray Tracing in (Less Than) One Weekend with DLang -- Mike Shah
m https://www.youtube.com/watch?v=nCIB8df7q2g
o DConf Online '22 - Engineering a Ray Tracer on the Next Weekend with DLang
m https://www.youtube.com/watch?v=MFhTRiobWfU
e All of my other conference talks (many related to D)
o http://tinyurl.com/mike-talks

123

https://wiki.dlang.org/Videos#Tutorials
https://www.youtube.com/watch?v=nCIB8df7q2g
https://www.youtube.com/watch?v=MFhTRiobWfU
http://tinyurl.com/mike-talks

Vulkan

e Most folks will probably point you to Vulkan as a modern graphics
API to learn

o They are probably right -- as Vulkan allows you to create pipelines that execute
much better concurrently.

n.'B Packages Documentation v About v Download Login Search for a package Q 1

Search results for: vulkan

Package Latest version Date Score Description

erupted 2.1.98+v1.3.248 2023-Apr-20 2.4 Auto-generated D bindings for Vulkan

derelict- 0.0.20 2018-Jul-07 2.0 A dynamic binding to the vulkan api.

vulkan

d-vulkan 031 2016-May-19 1.3 Auto-generated D bindings for Vulkan

glfw-d 111 2023-Jul-03 14 D translation of GLFW, a multi-platform library for OpenGL, OpenGL ES, Vulkan,
window and input

teraflop 0.8.0 2021-Feb-05 0.0 An ECS game engine on a Vulkan foundation

vulkanish 1.0.0-alpha.l 2020-Apr-09 0.7 Helper functions/templates for Erupted Vulkan. 124

eriinted v?2 i I I 2018-Mar-26 08 Auta-aenerated D hindinas for Viilkan

The D language tour

e Nice set of online
tutorials that you can

work through in 1 day

o Found directly on the D

language website under
‘Learn’

D' DLang Tour

Imports and modules
ImportS and modules Basic types @

Memory

; " == - " Mutability
One of D's core design decision was to be consistent and avoid corner g

in the language. This is called turtles all the way down. One good exa
for this consistency are import s.

Control flow
Functions

Structs

Imports AT

Slices

For a simple hello world program in D, import s are needed. The impo fGasatEt

functions and types from the given module available. Loops
Foreach
The turtles start falling down Ranges
Associative Arrays
An import statement does not need to appear at the top of a source filgiie e
functions or any other scope. In the following chapters you will see thg
D. The language doesn't impose arbitrary restrictions on you.

ally within

Interfaces all concepts in

Templates

ive i Delegat
Selective imports elegates

Exceptions

Further Reading

The standard library, called Phobos, is located under the package std erenced through

Welcomev D'sBasicsv D'sGemsv Multithreading v

Vibedv DbyExamplesv DUB package:

void main()

{
import std.stdio;
// or import std.stdio : writeln;
writeln("Hello, World!");

https://tour.dlanqg.org/

125

https://tour.dlang.org/

sSummary

I hope you have enjoyed learning a bit about the D programming
language
o Itintegrates well with other tools (renderdoc, gdb) and programming skills (e.g. C
or C++) you already have!

I hope you otherwise may try to expand your horizons and try out a
new language in your respective domain -- see if it gives you a
competitive advantage, or otherwise improves your skills as an
engineer!

126

S5 Thank you ACCU 2025!

=025

The Case for

Graphics Programming
Using the D Language

Mike Shah |

- ’ Social: @MichaelShah

- Web: mshah.io

3 . l Courses: courses.mshah.jo
P ol (23 YouTube
. 3 I v\ .Yyoutube.com/c/MikeShah
= _ & http://tinyurl.com/mike-talks

—

14:00 - 15:30 Tue, April 1, 2025

90 minutes | Introductory Audience

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Thank you!

