
11

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

14:00 - 15:30 Tue, April 1, 2025

90 minutes | Intermediate Audience

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Abstract (Which you already read :))

2

Talk Abstract: ‘write fast, read fast, and run fast’ is the mantra found on the D
programming language homepage (https://dlang.org/). Did you notice a word
game and graphics programmers love that is used 3 times? Fast! In this talk I
will show examples of how I have used programming techniques that
available in the D programming language to build graphics applications and
games. Throughout this talk I will showcase graphics demos in the D
language, and more generally programming language features that 'changed'
my approach to graphics programming. The greater goal of this talk, is to
show attendees why there can be a payoff of using non-mainstream
programming languages in specific domains. After all -- why not have a
competitive advantage?

https://dlang.org/

Your Tour Guide for Today
Mike Shah

● Current Role: Teaching Faculty at Yale University
(Previously Teaching Faculty at Northeastern University)

○ Teach/Research: computer systems, graphics, geometry, game
engine development, and software engineering.

● Available for:
○ Contract work in Gaming/Graphics Domains

■ e.g. tool building, plugins, code review
○ Technical training (virtual or onsite) in Modern

C++, D, and topics in Performance or Graphics APIs
● Fun:

○ Guitar, running/weights, traveling, video
games, and cooking are fun to talk to me about!

3

Web
www.mshah.io

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io
Conference Talks
http://tinyurl.com/mike-talks

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Your Tour Guide for Today
Mike Shah

● Current Role: Teaching Faculty at Yale University
(Previously Teaching Faculty at Northeastern University)

○ Teach/Research: computer systems, graphics, geometry, game
engine development, and software engineering.

● Available for:
○ Contract work in Gaming/Graphics Domains

■ e.g. tool building, plugins, code review
○ Technical training (virtual or onsite) in Modern

C++, D, and topics in Performance or Graphics APIs
● Fun:

○ Guitar, running/weights, traveling, video
games, and cooking are fun to talk to me about!

4

Web
www.mshah.io

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io
Conference Talks
http://tinyurl.com/mike-talks

Come join me April 12th online
if you enjoy today’s talk!

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Quick Poll: Raise your hand if you have heard
of the D programming language?

5

Quick Poll: Raise your hand if you
used the D1 (2001 to ~2007) programming
language?

6

Quick Poll: Raise your hand if you
used the D2 (2007 to now) programming
language?

7

Quick Poll: Raise your hand if you actively
use D for some project (hobby / commercial /
etc)?

8

A First Impression
La premiere impression

첫인상

9

Pop Quiz: (l’examen surprise!) (1/8)

10

● Let’s take a look at an
example of D code

○ I’ll give everyone a
minute to think about or
guess what this program
does

● So... what does this
program do?

Pop Quiz: (l’examen surprise!) (2/8)

11

● Line 3:
○ There’s a built-in standard

library (named ‘Phobos’)
○ There’s a module system .

● Line 5:
○ Function call using uniform

function call syntax (UFCS)
● Line 7:

○ enum constant, evaluated at
compile-time

● Line 9:
○ immutable static data stored

in b
● Line 12:

○ pragma outputs value after
compilation (before runtime) One of the first examples on the www.dlang.org

webpage - sorting an array -- at compile-time!

http://www.dlang.org

Pop Quiz: (l’examen surprise!) (3/8)

12

● Line 3:
○ There’s a built-in standard

library (named ‘Phobos’)
○ There’s a module system .

● Line 5:
○ Function call using uniform

function call syntax (UFCS)
● Line 7:

○ enum constant, evaluated at
compile-time

● Line 9:
○ immutable static data stored

in b
● Line 12:

○ pragma outputs value after
compilation (before runtime) One of the first examples on the www.dlang.org

webpage - sorting an array -- at compile-time!

http://www.dlang.org

Pop Quiz: (l’examen surprise!) (4/8)

13

● Line 3:
○ There’s a built-in standard

library (named ‘Phobos’)
○ There’s a module system .

● Line 5:
○ Function call using uniform

function call syntax (UFCS)
● Line 7:

○ enum constant, evaluated at
compile-time

● Line 9:
○ immutable static data stored

in b
● Line 12:

○ pragma outputs value after
compilation (before runtime) One of the first examples on the www.dlang.org

webpage - sorting an array -- at compile-time!

http://www.dlang.org

Pop Quiz: (l’examen surprise!) (5/8)

14

● Line 3:
○ There’s a built-in standard

library (named ‘Phobos’)
○ There’s a module system .

● Line 5:
○ Function call using uniform

function call syntax (UFCS)
● Line 7:

○ enum constant, evaluated at
compile-time

● Line 9:
○ immutable static data stored

in b
● Line 12:

○ pragma outputs value after
compilation (before runtime) One of the first examples on the www.dlang.org

webpage - sorting an array -- at compile-time!

http://www.dlang.org

Pop Quiz: (l’examen surprise!) (6/8)

15

● Line 3:
○ There’s a built-in standard

library (named ‘Phobos’)
○ There’s a module system .

● Line 5:
○ Function call using uniform

function call syntax (UFCS)
● Line 7:

○ enum constant, evaluated at
compile-time

● Line 9:
○ immutable static data stored

in b
● Line 12:

○ pragma outputs value after
compilation (before runtime) One of the first examples on the www.dlang.org

webpage - sorting an array -- at compile-time!

http://www.dlang.org

Pop Quiz: (l’examen surprise!) (7/8)

16

● Line 7:
○ This is a fixed-size array.
○ We can slice into it

■ e.g.
■ a[0 .. 2] returns [3,1,2]

○ Arrays (whether dynamic or
static) know their ‘length’
and store the ‘ptr’ together.

One of the first examples on the www.dlang.org
webpage - sorting an array -- at compile-time!

http://www.dlang.org

8/8)

17

● One of the first examples on the
www.dlang.org webpage

○ An example of sorting an array!
○ Line 3:

■ There’s a built-in standard
library (named ‘Phobos’)

○ Line 4:
■ Function call using universal

function call syntax (UFCS)
○ Line 7:

■ enum constant
○ Line 8:

■ immutable static data stored
in b

○ Line 12:
■ pragma outputs value after

compilation
● This program does most of its

work (the working) at
compile-time!

Why you might care to
look?

● D tries to execute as
much as possible at
compile-time

○ And the
code...just looks
like regular code!

● Compile-time execution
saves the user time at
run-time -- big win!

● https://dlang.org/blog/2017/06/05/compile-time-s
ort-in-d/

● https://tour.dlang.org/tour/en/gems/compile-time
-function-evaluation-ctfe

One of the first examples on the www.dlang.org
webpage - sorting an array -- at compile-time!

http://www.dlang.org
https://dlang.org/blog/2017/06/05/compile-time-sort-in-d/
https://dlang.org/blog/2017/06/05/compile-time-sort-in-d/
https://tour.dlang.org/tour/en/gems/compile-time-function-evaluation-ctfe
https://tour.dlang.org/tour/en/gems/compile-time-function-evaluation-ctfe
http://www.dlang.org

The Case for D
(By Andrei Alexandrescu)

18

The Case for DLang (1/3)

19

● Nearly 16 years ago Andrei
Alexandrescu wrote ‘The
Case for D’ (posted on Dr.
Dobb’s journal and other
sources)

○ The D language has continued
to improve on its strong
foundations since that time!

● Andrei summarizes DLang
as:
○ “D could be best described

as a high-level systems
programming language”

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-c
ase-for-d/217801225

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225
https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225

The Case for DLang

20

● Nearly 15 years ago Andrei
Alexandrescu wrote ‘The
Case for D’ (posted on Dr.
Dobb’s journal and other
sources)

○ 15 years since, the D language
has continued to improve on
its strong foundations

● Andrei summarizes DLang
as:
○ “D could be best described

as a high-level systems
programming language”

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-c
ase-for-d/217801225

At a glance D has many features: https://dlang.org/spec/spec.html

[1] and more here: https://dlang.org/comparison.html

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225
https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225
https://dlang.org/spec/spec.html
https://dlang.org/comparison.html

The Case for DLang

21

● Nearly 15 years ago Andrei
Alexandrescu wrote ‘The
Case for D’ (posted on Dr.
Dobb’s journal and other
sources)

○ 15 years since, the D language
has continued to improve on
its strong foundations

● Andrei summarizes DLang
as:
○ “D could be best described

as a high-level systems
programming language”

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-c
ase-for-d/217801225

At a glance -- Dlang is :
● A compiled language (3 freely available compilers)

○ Extremely fast compilation with - DMD Compiler
○ Two additional compilers with LLVM (LDC) and GCC (GDC) backends

● statically typed language
● Plays well with C, C++, Obj-C

○ Embedded C compiler - ImportC
○ e.g. of interoperation with C++ (Interfacing with C++)

● Many modern language features:
○ Ranges (and foreach), Compile-Time Function Execution (CTFE), Array

slicing, lambda’s, mixins, contracts, unit testing, template constraints,
multiple memory allocation strategies, and more[1].

[1] and more here: https://dlang.org/comparison.html

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225
https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225
https://dlang.org/spec/importc.html
https://dlang.org/spec/cpp_interface.html
https://dlang.org/comparison.html
https://dlang.org/comparison.html

My Goal Today

22

● Is to convince you D is the best programming language!😉
● (next slide)

Real Goal for you Today

23

● Is to convince you D is the best programming language!😉
● ...okay I know it is April 1st -- so that’s not quite what I feel I need to

do. 😉
● My goal is for you to expand your horizon, and decide if D will give

you a competitive advantage for your project.
● Specifically today, I’ll be looking at the graphics programming

domain, where I think D has personally given me an advantage in
iteration speed and performance

● Note:
○ This talk is not meant to teach you graphics from scratch, but rather focus on

language features that made my life easier in the graphics domain.

The Case for D
as a Graphics Programmer

(By Mike Shah)

24

The Case for D for graphics programming (1/2)

25

1. Most of the right defaults
a. e.g. variables are initialized (or use =void to avoid .init values), const is transitive,

casts must be explicit, arrays carry ‘length’ and ‘ptr’, thread local storage, etc.
2. Faster prototyping as a result of module system and excellent DMD

compiler
a. One can leverage the DMD frontend with LLVM and GCC backend for

optimizations and targeting more platforms
3. Can generate fast code!

a. SIMD vector extensions available https://dlang.org/spec/simd.html
b. Multitasking support available [introduction here]:

i. Threads, fibers, etc.
4. It’s fun to write code in DLang (my personal bias)

https://dlang.org/spec/simd.html
https://www.youtube.com/watch?v=NWIU5wn1F1I

The Case for D for graphics programming (2/2)

26

1. Most of the right defaults
a. e.g. variables are initialized (or use =void when speed matters), const is transitive,

casts must be explicit, arrays carry ‘length’ and ‘ptr’
2. Faster prototyping as a result of module system and excellent DMD

compiler
a. (Can then leverage D frontends with LLVM and GCC backend for optimizations

and target platforms)
3. Can generate fast code

a. SIMD vector extensions available https://dlang.org/spec/simd.html
b. Multitasking support available [introduction here]:

i. Threads, fibers, etc.
4. It’s fun to write code in DLang (my personal bias)

I will show you! :)

https://dlang.org/spec/simd.html
https://www.youtube.com/watch?v=NWIU5wn1F1I

My Case for D: Ray Tracing (non-real time graphics) (1/2)

27https://www.youtube.com/watch?v=nCIB8df7q2g

● My case for D starts in 2022 when I built a ray tracer in D in a
weekend (based on Peter Shirley’s book)

○ The productivity of the language was encouraging as someone with a good
background in C++

https://www.youtube.com/watch?v=nCIB8df7q2g
https://raytracing.github.io/books/RayTracingInOneWeekend.html

My Case for D: Ray Tracing (non-real time graphics) (2/2)

28https://www.youtube.com/watch?v=MFhTRiobWfU

● I was encouraged enough to then give a second talk a few months later in
2023, for which I really started to learn to use the D language more fully

○ So let me give you a highlight of some of my early insights to give you more of a taste of
the D language.

https://www.youtube.com/watch?v=MFhTRiobWfU

Raytraced Graphics
(Non-interactive, the stuff they generally use in the movies)

29Note: Ray Tracing and path tracing are terms often used interchangeably, but they are technically different based on the where the
origin of the ray is coming from.

What is a raytracer?

30

● As a quick introduction, a raytracer is
where we ‘cast’ a ray from some location
and see if it intersects with another
object.

● Typically we do this (at least) once
per-pixel

○ Rays may also bounce multiple time (to create
reflections and shadows)

● You can otherwise see an example of a
raytracer progressively building the
scene for each scanline on the
bottom-right

Ray Tracing - Analogy

● The analogy is exactly like
pointing a laser pointer

○ Our laser pointer hits the
closest surface that it hits
against

31

Interfaces in D for ‘ray intersection’

32

● Dlang supports interfaces,
which allow us to derive a
class from common
interface, where we must
implement the member
functions of the interface.

○ abstract classes and regular
classes also exist.

■ abstract classes are similar
to interfaces, but allow
member variables.

● Interfaces provides a nice
‘contract’ when
implementing some hittable
surface in a raytracer

https://dlang.org/spec/interface.html
https://dlang.org/spec/class.html#abstract

D class versus struct

● In D class and struct represent
reference and value types

○ Classes are (by default) heap allocated
○ Classes allow for polymorphism
○ Structs are (by default) stack allocated
○ No default constructor for ‘struct’

● I *like* that these keywords have
different meaning in the design of
my programs.

33

Clean Template Syntax (my opinion)

● Creating templated types
are a breeze in D for any
struct, class, function, or
type we create

● Simply use parentheses
(line 5) where the type is

○ Lines 10-12 demonstrate
with ‘!’ the type

○ Using the ‘alias’ keyword at
global or local scopes gives
us another name.

○ Line 15 adds further power
if we want some ‘semantic’
meaning of a Point being
different than a Vector

■ (Even though the data
is the same)

34

Operator Overload

● D allows operator
overloading for member
functions

○ e.g. ‘opBinary’ for binary
operations involving
operations with the type on
the left, and type on the
right

35

A better Overload

● Using D’s mixin feature,
the equivalent code can be
generated at compile-time
for each template.

○ The ‘string op’ is already the
template parameter for the
operating being used.

○ So instead of having to
compare, simply use the
mixin.

○ No comparisons, no branches
used, only generate code
needed (e.g. + or -), and
otherwise future-proof your
code if you add other
operators.

36

Templates for the win!

● Avoiding branches in this
particular case sped up
my raytracer

○ (From 0.769 seconds to
0.587seconds)

● The code features fewer
branches, is easier to
understand, supports
more operators, and is
arguably easier to read.

37

Template Constraints

● Note:
○ Maybe we don’t want to allow

‘any’ operator with opBinary
○ Observe line ‘10’ we can add

template constraints to otherwise
check which symbols are
allowed.

● Other features shown:
○ line 12:

■ ‘auto’ for deducing the type
and generic programming

■ ‘typeof(this)’ for placing
the templated type
instance.

○ Note:
■ For structs, constructors

are automatically created
for us if one is not defined.

38

Vec3 and Unit Test

● D has built-in
‘unittest’ blocks to
otherwise increase
my confidence in the
correctness of my
code.

● Here is another
example of a Vec3
type

39

-profile [switches see -profile]

40

● Note: D has a built in profiler, garbage collection profiler, and code
coverage tools that just make it feel complete!

○ These are great instrumentation tools to help you understand your performance!

https://dlang.org/dmd-linux.html#switches

-profile=gc

41

● Using D’s profiler we can see how many heap allocations took
place, and it turns out at some point I was doing many with Vec3!

-profile=gc (After making a Vec3 a struct)

42

● Rerunning again (this time, no profile collected)
● We’re again, about twice as fast again!

Before After

std.parallelism [docs]

43

● D offers several forms of
concurrency as well as
parallelism.

● For our ray tracer, we truly
want parallelism, as we are
able to cast rays in an order
independent task of
casting rays

○ (i.e. We cast ~1 ray per pixel in
our screen, and we write to
one location in memory at a
time.)

https://dlang.org/phobos/std_parallelism.html

For-loop to parallel task

● Highlighted below is the conversion from a serial O(n2) loop, to a
parallel computation using Tasks built in Dlang.

○ Note: iota gives us the range of values that we are going to iterate on in parallel.
○ Note: See Ali’s Dconf 22 talk for a guide to iota:

https://www.youtube.com/watch?v=gwUcngTmKhg

44

https://www.youtube.com/watch?v=gwUcngTmKhg

real time (versus user time)

● Measuring the time now, we
need to somewhat rely on the
‘real’ time when running
parallel threads.

○ ‘user’ time represents the total cpu
time -- and that’s a sum of all of the
cpus running in parallel.

○ Before converting to parallel, we
have now gone from 5.9 seconds to
less than a second by adding
‘.parallel’ in our loops to spawn
threads automatically

45

Release Build

46

● D by default offers safety (e.g. default initialized values, bounds
checking on arrays, thread local variables, and more!), but we can
toggle some of those options on and off as needed

○ Note: There are additional memory safety annotations (@safe, @trusted, @system)
that I will not cover during this talk.

● Toggling the compiler flags from https://dlang.org/dmd-linux.html
we can do a release build for more performance with DMD

○ (And using GDC or LDC compiler backends provides even faster executables.)

https://dlang.org/dmd-linux.html

47

48

49

An example of < 24 hours of work,
building a math library and data-driven
raytracer in D.

My Case for D

50

● So at this point, I was pretty encouraged by D, enough that I
decided I would start teaching D (at Northeastern University and
now Yale University) in Spring of 2023 in Software Engineering to
start

○ (If you watch the second half of the talk -- you also hear directly from the
students their unfiltered thoughts on using and learning D in the course)

https://www.youtube.com/watch?v=V2YwTIIMEeU

https://www.youtube.com/watch?v=V2YwTIIMEeU

C++ and DLang as complementary languages

51

● At ACCU last year, I found that writing D code improved my C++ knowledge quite
a bit as well.

● One key thing was that my ‘D’ programming had a much faster iteration time -- so
I wanted to take on the challenge of real-time graphics programming in D next

https://www.youtube.com/watch?v=CnKsOak0DHU (Note: The talk is not about Dlang vs C++ as the thumbnail suggests!)

https://www.youtube.com/watch?v=CnKsOak0DHU

Real-Time Graphics Programming in D
(For things like games and simulation)

52

What is needed for real-time graphics programming? (1/2)

53

Generally speaking:

1. A systems programming language (is most commonly used) for
graphics programming
a. Many graphics APIs (OpenGL, Vulkan, etc.) are C-based APIs
b. D talks with C very easily (See the interfacing guide), and it is often merely a

matter of using a binding to expose the C library functions to a programmer.
i. D also provides a way to transition C code

(https://dlang.org/spec/importc.html) to D code (C++ and Obj-C are also
works in progress)

ii. See some of the example guides here: https://dlang.org/articles/ctod.html
2. We need a math library, or otherwise the ability to make a good

math library
a. D itself provides operating overloading as we have previously seen to make this

convenient.

https://dlang.org/spec/interfaceToC.html
https://dlang.org/spec/importc.html
https://dlang.org/articles/ctod.html

What is needed for real-time graphics programming? (2/2)

54

Generally speaking:

1. A systems programming language (is most commonly used) for
graphics programming
a. Many graphics APIs (OpenGL, Vulkan, etc.) are C-based APIs
b. D talks with C very easily (See the interfacing guide), and it is often merely a

matter of using a binding to expose the C library functions to a programmer.
i. D also provides a way to transition C code

(https://dlang.org/spec/importc.html) to D code (C++ and Obj-C are also
works in progress)

ii. See some of the example guides here: https://dlang.org/articles/ctod.html
2. We need a math library, or otherwise the ability to make a good

math library
a. D itself provides operating overloading as we have previously seen to make this

convenient.

But first -- as some inspiration, I wondered if anyone using
D for serious real-time graphics work (the answer was of

course yes).

It’s sort of a confidence booster to see someone else has
used a tool to build something -- so here are some

examples

https://dlang.org/spec/interfaceToC.html
https://dlang.org/spec/importc.html
https://dlang.org/articles/ctod.html

D Graphics Projects
(More projects found at my FOSDEM 2024 talk here:
https://www.youtube.com/watch?v=yLaUsmLr9so)

55

https://www.youtube.com/watch?v=yLaUsmLr9so

AAA Game Projects in D

● It’s also worth noting that D has
been used in AAA Commercial
Games

○ Ethan Watson has a wonderful
presentation describing that experience

○ Link to talk:
https://www.gdcvault.com/play/102384
3/D-Using-an-Emerging-Language

● Talk Abstract: Can you use D to make games? Yes.
Has it been used in a major release? It has now. But what
benefits does it have over C++? Is it ready for mass use? Does
treating code as data with a traditional C++ engine work?
This talk will cover Remedy's usage of the D programming
language in Quantum Break and also provide some details
on where we want to take usage of it in the future.

56

https://m.media-amazon.com/images/M/MV5BOThjOWRhN2QtYmIxMy00MGE3LTk5ZWMtY2ZkMzI0MGY1ZTM1XkEyXkFqcGdeQX
VyMTYxMzY1ODg@._V1_.jpg

Utilized the D Programming Language Quantum Break -- Game

https://www.gdcvault.com/play/1023843/D-Using-an-Emerging-Language
https://www.gdcvault.com/play/1023843/D-Using-an-Emerging-Language
https://m.media-amazon.com/images/M/MV5BOThjOWRhN2QtYmIxMy00MGE3LTk5ZWMtY2ZkMzI0MGY1ZTM1XkEyXkFqcGdeQXVyMTYxMzY1ODg@._V1_.jpg
https://m.media-amazon.com/images/M/MV5BOThjOWRhN2QtYmIxMy00MGE3LTk5ZWMtY2ZkMzI0MGY1ZTM1XkEyXkFqcGdeQXVyMTYxMzY1ODg@._V1_.jpg

● Website with games and tutorials: https://gecko0307.github.io/dagon/
● Github or Dub Repository: https://github.com/gecko0307/dagon | https://code.dlang.org/packages/dagon

57

Built in the D Programming Language Dagon -- Game Engine

https://gecko0307.github.io/dagon/
https://github.com/gecko0307/dagon
https://code.dlang.org/packages/dagon

● Website with games: https://circularstudios.com/
● Github or Dub Repository: https://github.com/Circular-Studios/Dash
● Forum Post: https://forum.dlang.org/thread/qnaqymkehjvopwxwvwig@forum.dlang.org 58

Built in the D Programming Language Dash -- Game Engine

https://circularstudios.com/
https://github.com/Circular-Studios/Dash
https://forum.dlang.org/thread/qnaqymkehjvopwxwvwig@forum.dlang.org

● Github or Dub Repository: https://github.com/MrcSnm/HipremeEngine
● DConf 2023 Talk: DConf '23 -- Hipreme Engine: Bringing D Everywhere -- Marcelo Mancini

59

Built in the D Programming Language Hipreme Engine -- Game Engine

https://github.com/MrcSnm/HipremeEngine
https://www.youtube.com/watch?v=jgygD7B_CPk

● Steam Page: https://store.steampowered.com/app/2290770/The_Art_of_Reflection/
● D Forums 2025: https://forum.dlang.org/post/bwlxpoolebphvgrbbzcr@forum.dlang.org

○ Utilizing Direct3D 11 and PhysX 60

Built in the D Programming Language The Art of Reflections -- Game

https://store.steampowered.com/app/2290770/The_Art_of_Reflection/
https://forum.dlang.org/post/bwlxpoolebphvgrbbzcr@forum.dlang.org

● Website: https://gdtk.uqcloud.net/ and https://gdtk.uqcloud.net/pdfs/eilmer-user-guide.pdf
● Github or Dub Repository: https://github.com/gdtk-uq/gdtk

61

Built in the D Programming Language Eilmer(/ɛlmə/) Compressible Flow Simulator

https://gdtk.uqcloud.net/
https://gdtk.uqcloud.net/pdfs/eilmer-user-guide.pdf
https://github.com/gdtk-uq/gdtk

Demo 1
First Triangle

62

Graphics Programming Crash Course

63

● In order to get a triangle drawing using our
a GPU we need a few things:

○ 1. A window
○ 2. To setup OpenGL (or your preferred graphics API)
○ 3. Upload data from the CPU to GPU (i.e. the

graphics pipeline

Graphics Programming Crash Course - Window Setup (1/2)

64

● The easiest way to setup a window is to use a cross-platform
windowing library like glfw or SDL

○ Mike Parker’s bindbc-glfw or bindbc-sdl are great packages to get started
○ https://code.dlang.org/packages/bindbc-glfw
○ These packages are ‘bindings’ that otherwise expose the C functions calls from

windowing libraries to D code

https://code.dlang.org/packages/bindbc-glfw

Graphics Programming Crash Course - Window Setup (2/2)

65

● You can avoid any ‘language
bindings’ if you like as I show here

● In general, you should use the bindbc
or other bindings however, as that
way you’ll get a complete set of
functions.

● But as you can see, talking to C code
is as simple as either including the
binding, or providing a function or
type declaration, and then simply
linking in the library

○ e.g. -L-lglfw3
■ -L -- passes a flag to the linker
■ -lglfw3 -- brings in the library
■ Additionally, you may specify the

path to where to find the library
file

● e.g. -L-L/usr/local/lib

Graphics Programming Crash Course - API Setup (1/4)

66

● For graphics APIs, then you need to typically ‘load’ the functions or
extensions.

○ For OpenGL, you can use a tool like ‘glad’ to generate the C-function declarations
for each function that your hardware supports.

■ https://glad.dav1d.de/

https://glad.dav1d.de/

Graphics Programming Crash Course - API Setup

67

● For graphics APIs, then you need to typically ‘load’ the functions or
extensions.

○ For OpenGL, you can use a tool like ‘glad’ to generate the C-function declarations
for each function that your hardware supports.

Now as we’re seeing our first D code --
let me mention the ‘D language’
advantage.
● D has a module system -- no need

to mess with .h or .hpp files (in
fact, there’s no preprocessor)

● Compiling with individual
modules allows the DMD
compiler to work super fast!

Graphics Programming Crash Course - API Setup

68

● For graphics APIs, then you need to typically ‘load’ the functions or
extensions.

○ For OpenGL, you can use a tool like ‘glad’ to generate the C-function declarations
for each function that your hardware supports.

● Note: If you don’t want to bother
with the ‘C-style way’ (which I
don’t), then you can use the
‘bindbc’ loaders to simply load
OpenGL and your windowing
library of choice

Graphics Programming Crash Course - API Setup

69

● For graphics APIs, then you need to typically ‘load’ the functions or
extensions.

○ For OpenGL, you can use a tool like ‘glad’ to generate the C-function declarations
for each function that your hardware supports.

Quality of life improvements
● Modules generally allow you to avoid

worrying about the order you declare
functions.

● There’s also ‘module level constructors’ that
are called before main.
○ This can be clearly utilized if you have

some initialization code -- like setting
up a graphics API prior to its use

■ ‘shared static this’ means that
block of code is called once ever
(even amongst many threads) --
and this again is called before
main() in lexicographical order

Graphics Pipelines - High Level Abstraction

● We now have OpenGL functions loaded (using
glad), and a window setup (using glfw with our C
binding)

● We are now ready to start doing some graphics
programming using the OpenGL API

70

Application Stage

Geometry

Rasterization and
Pixel Processing

Display

Graphics Pipelines - Application Stage

● At the application stage, this
is our main loop

○ We also will ‘send’ geometric
data at this stage from CPU to
the GPU

○ The application stage otherwise
is where all the ‘cpu’ work is
completed:

■ File I/O
■ cpu memory allocation
■ Handling input

71

Application Stage

Geometry

Rasterization and
Pixel Processing

Display

Graphics Pipelines - Geometry Stage

● At the geometry stage,
we are now on the GPU

○ Data that has been sent
to the GPU from the CPU
is being assembled into
primitives

○ Primitives may also be
transformed (e.g. rotated,
scaled, or translated)

72

Application Stage

Geometry

Rasterization and
Pixel Processing

Display

Graphics Pipelines - Rasterization

● At this stage, we
represent our
geometric shapes (e.g.
triangles) as discrete
pixels.

● We also color in those
pixels based on their
color and transparency

73

Application Stage

Geometry

Rasterization and
Pixel Processing

Display

Graphics Pipelines - Display

● At the final stage you display the
‘frame’ that you have created.

○ This is stored in something known as a
‘framebuffer’ that at the least stores the
colors of your pixels.

74

Application Stage

Geometry

Rasterization and
Pixel Processing

Display

Displaying a Triangle (1/5)

● To draw a triangle, we
use OpenGL to upload
data from the CPU to
the GPU

○ For those who have done
graphics programming
-- this code is nearly the
same as any C or C++
tutorial you will find

■ (i.e. all of the
OpenGL functions
are the same)

75

Displaying a Triangle

● To draw a triangle, we
use OpenGL to upload
data from the CPU to
the GPU

○ For those who have done
graphics programming
-- this code is nearly the
same as any C or C++
tutorial you will find

■ (i.e. all of the
OpenGL functions
are the same)

76

● One small change from C or
C++ is this line above.

○ D’s Compile-Time
Function Execution
(CTFE) and general
introspection capabilities
can be useful for
catching bugs at
compile-time

● The pragma I stuck in here is
to confirm at compile-time I
have the right amount of data.
○ Arrays are also ‘bounds

checked’ for safety (can
be turned off if needed)

https://wiki.dlang.org/Compile-time_vs._compile-time
https://wiki.dlang.org/Compile-time_vs._compile-time

Displaying a Triangle

● To draw a triangle, we
use OpenGL to upload
data from the CPU to
the GPU

○ For those who have done
graphics programming
-- this code is nearly the
same as any C or C++
tutorial you will find

■ (i.e. all of the
OpenGL functions
are the same)

77

● See this example below when
I did not populate color data
properly

● ‘static asserts’ can also be placed
to further write code more solid
code.

Example of a ‘mistake’ I made in preparation of the demo

https://dlang.org/spec/version.html#static-assert

Displaying a Triangle

● To draw a triangle, we
use OpenGL to upload
data from the CPU to
the GPU

○ For those who have done
graphics programming
-- this code is nearly the
same as any C or C++
tutorial you will find

■ (i.e. all of the
OpenGL functions
are the same)

78

● The enum ‘GL_FLOAT’ above is actually
an ‘integer’ type in the OpenGL API

○ The ‘float’ type we actually want is
the ‘alias’ to GLfloat shown in the
code

○ We could use a static assert at
compile-time with
GLfloat.sizeof to ensure it
meets our size requirements

● Luckily however, D’s basic types have
predictable fixed sizes [table]

https://dlang.org/library/std/meta/alias.html
https://dlang.org/spec/version.html#static-assert
https://tour.dlang.org/tour/en/basics/basic-types

Displaying a Triangle (5/5)

● To draw a triangle, we
use OpenGL to upload
data from the CPU to
the GPU

○ For those who have done
graphics programming
-- this code is nearly the
same as any C or C++
tutorial you will find

■ (i.e. all of the
OpenGL functions
are the same)

79

● Other quality of life features include things like explicit casting using the
‘cast’ keyword
○ (C on the left, and D on the right)

Graphics Pipelines - Shaders

● Now in order to actually do something, we have
to create a graphics pipeline

○ This is done by processing our geometry in a GPU
program called a ‘vertex’ or shader.

○ We then also write one other GPU program called a
‘fragment’ or ‘pixel’ shader

80

Application Stage

Geometry

Rasterization and
Pixel Processing

Display

Shader Code (1/2)

● To the right is all the shader
code needed

○ (Error checking separated out
into one other function)

81

Shader Code (2/2)

● To the right is all the shader
code needed

○ (Error checking separated out
into one other function)

82

● One interesting thing for this
demo is I did not bother to write
any code to load the shaders
from a file on disk.
○ Instead, I just imported the

code (similar to C23’s
upcoming #embed) feature.

● The advantage here is:
○ 1. primarily simplicity for

small programs [more on
working with C strings]

○ 2. If I do want to embed
code as data, it’s relatively
straightforward if I do not
want to go to disk

https://dlang.org/blog/2021/05/24/interfacing-d-with-c-strings-part-one/
https://dlang.org/blog/2021/05/24/interfacing-d-with-c-strings-part-one/

Demo 2
Objects

83

Parsing Structured Data

84

● If we want to draw
something more
interesting than
triangles, we will load
that data from a file.

● To the right -- is the
entire parser for the
.obj file.

Parsing Structured Data

85

● If we want to draw
something more
interesting than
triangles, we will load
that data from a file.

● To the right -- is the
entire parser for the
.obj file.

● Observe where uniform
function call syntax
(UFCS) really shines
allowing us to right
concise and readable
code.

Parsing Structured Data

86

● If we want to draw
something more
interesting than
triangles, we will load
that data from a file.

● To the right -- is the
entire parser for the
.obj file.

● On your own time you can zoom in and contrast the C++ (left)
versus the D (right) code.
○ When simple, both read about the same -- but as

complexity goes up, the D code remains about the same
complexity.

Parsing Structured Data

87

● If we want to draw
something more
interesting than
triangles, we will load
that data from a file.

● To the right -- is the
entire parser for the
.obj file.

● It remains a future experiment -- but I think with D’s built-in
concurrency (std.concurrency) I could probably speed this up
quite a bit.
○ It’s an open challenge to myself (and anyone else) to see

if you can build the fastest .obj parser.

RIP https://twitter.com/MichaelShah/status/1731522845191057919

https://dlang.org/phobos/std_concurrency.html
https://twitter.com/MichaelShah/status/1731522845191057919

Parsing OBJ Files (1/2)

88

● A .obj (3D Object File Format) file looks
something like on the right

● We have geometry data at the top
● We then have potentially 1 or more

materials and/or objects group on the
bottom

See DConf 2024 Online talk for how short the parsing code can be!

Parsing OBJ Files (2/2)

89

● What’s neat is you can actually
parallelize this process (where it makes
sense on large enough files!)

● So if your artists are throwing lots of
geometry and textures at you, you can
parse the top half first -- then

○ Every time you hit ‘usemtl’ you can kickstart
the process of creating a ‘chunk’ of a 3D object,
or otherwise parsing the material file or loading
the image files

○ It’s become a little bit of a hobby project to see
how fast I can parse these .obj files -- stay
tuned!

■ i.e. Caldera Data Set from Call of Duty will
begin investigation soon.

https://blog.activision.com/content/atvi/activision/atvi-touchui/web/en_gb/blog/activision/2024/activision-releases-call-of-duty-warzone-caldera-data-set

Parsing Structured Data

90

● If we want to draw
something more
interesting than
triangles, we will load
that data from a file.

● To the right -- is the
entire parser for the
.obj file.

https://twitter.com/MichaelShah/status/1731522845191057919

● Anyways... with a little bit more code, I was able to extend my
parser to handle .obj files that contain multiple models and
materials.
○ A mix of functional and object-oriented paradigms made

this quite nice!

https://twitter.com/MichaelShah/status/1731522845191057919

Parsing Structured Data

91

● If we want to draw
something more
interesting than
triangles, we will load
that data from a file.

● To the right -- is the
entire parser for the
.obj file.

● The other thing to note -- is that
complexity often arises with the many
variations of 3D data.
○ A 3D model can contain vertices or

a number of other attributes such
as texture coordinates, vertex
normals, or other primitives.

https://paulbourke.net/dataformats/obj/

https://paulbourke.net/dataformats/obj/

Parsing Structured Data

92

● If we want to draw
something more
interesting than
triangles, we will load
that data from a file.

● To the right -- is the
entire parser for the
.obj file.

https://paulbourke.net/dataformats/obj/

● With D’s metaprogramming capabilities,
you can generate the variations you
need for your geometry data.

https://paulbourke.net/dataformats/obj/

Parsing Structured Data

93

● If we want to draw
something more
interesting than
triangles, we will load
that data from a file.

● To the right -- is the
entire parser for the
.obj file.

https://paulbourke.net/dataformats/obj/

● With D’s metaprogramming capabilities,
you can generate the variations you
need for your geometry data.
○ This could also include setting up

the various layouts needed for
passing data to OpenGL

○ Observe the the right two different
layouts
■ Why write this error prone

boilerplate, when we could
otherwise generate it?

https://paulbourke.net/dataformats/obj/

Parsing Structured Data

94

● Here is an example of using a ‘SetVertexAttributes’ that is templated and builds
the code based off of a struct passed in.

● This generates the correct layout for a mesh given:
○ SetVertexAttributes!VertexFormat3F2F();

● Pro Tip: Don’t be afraid to introduce a new ‘scope’ with {}’s in your static foreach
loops if needed.

Demo 3
Render Targets

95

Multiple Render Targets (1/2)

96

● What the acute watcher
will observe is that the
last two demos are
almost exactly the
same

○ The difference is that this
final demo renders to an
offscreen texture, before
rendering the object

Renderpass
#1

Renderpass
#2

Renderpass
...

Final image is composed
of the ‘data’ from other

intermediate renderings.

Often we defer expensive
calculations to the end to
only compute them once
(e.g. deferred rendering)

Multiple Render Targets (2/2)

97

● There is actually
nothing D specific here
-- this is just a function
of the API

● And that’s exactly my
point -- if you’ve seen it
done in other
languages with
graphics APIs, you can
do the same work with
D, and take advantage
of D’s productivity.

Renderpass
#1

Renderpass
#2

Renderpass
...

Final image is composed
of the ‘data’ from other

intermediate renderings.

Often we defer expensive
calculations to the end to
only compute them once
(e.g. deferred rendering)

RenderDoc (a GPU Profiler) (1/2)

98

● For game and graphics
programming, the same GPU
tools (e.g. Renderdoc) have
worked just fine for me in D
as other toolstacks (e.g. C++)

○ These GPU Profilers are very
valuable for capturing a ‘memory
snapshot’ of what’s been
allocated on the GPU

● Other tools like ‘perf’ for CPU
profiling also work well with
D.

○ *I also like reminding folks of the
builtin profiler in D which is
handy.)

https://renderdoc.org/builds

https://renderdoc.org/builds

RenderDoc (a GPU Profiler) (2/2)

99

● Within a tool like
Renderdoc, you can
inspect the geometry just
as you normally would --

○ Again it’s the same OpenGL,
Vulkan, etc. function calls.

○ If you have prior
programming experience in
these APIs, the experience
transfers directly over.

Working with Geometry Challenge

100

● What is perhaps interesting in
this scene is that it may appear
to the user that there are only
‘two’ pieces of geometry.

○ the ‘bunny’ (glowing fun colors)
○ The building -- itself is just one file,

but made up of many ‘chunks’ of
other 3D data

○ next slide to see closer

OBJ File Format [wavefront obj file format]

101

● Same screenshot as
before, just slightly
larger

● Again showing that in
order to sift through
the many ‘chunks’ of
data in one file .obj I
had to parse it and
separate out the data.

https://en.wikipedia.org/wiki/Wavefront_.obj_file

Demo 4
Graphics Engine

102

Quick Demo of some objects

103

● So here’s a little capture of a
scene I’m working on

○ There's A little bit of lighting, and
a few models loaded, and about
260,000 triangles to draw the
scene.

■ It’s a purposefully
‘unoptimized set of art
assets’ to stress the system

○ This is the classic ‘Sponza’ scene
used in graphics with the classic
‘Stanford Bunny’ usually as
benchmarks

● This was just a small
hackathon in a few days
work!

Graphics Engine Design
Working Backwards a Bit

104

Structure of a Game (1/2)

105

● So moving away from the
graphics stuff for a moment,
the infrastructure for these
projects is pretty neat at the
‘core game loop’

○ Basically it’s just an
input/update/render function

○ I like to separate that out to
another function
(AdvanceFrame()) for more
control

Structure of a Game (2/2)

106

● Of course in a
game/graphics application
you may want more power
and make the system more
dynamic

● It becomes relatively easy
to have some ‘interface’
that you can write to

○ This is where ‘callbacks’
come in, and I can hook into
the system to do whatever is
needed.

○ Note: Writing your own
events to some FIFO queue is
another strategy

Rapid Iteration Time Matters A lot (Blooper Reel)

107

● In graphics you encounter all sorts of strange errors
○ So fast build times matter!

● Compiling and building primarily on DMD
○ LDC2 and GDC also build quite fast!

Hot Reloading Shaders (GPU)

108

● For graphic shaders (separate compiled programs that execute on
the GPU) -- hot reloading is fairly standard to help improve
iteration time

● Hot reload: Ability to recompile a portion of the program while the
program is still running

○ https://antongerdelan.net/opengl/shader_hot_reload.html

https://antongerdelan.net/opengl/shader_hot_reload.html

Hot Reload (CPU Side) (1/2)

109

● What you can do on the GPU, you
can of course do on the CPU

● I prototyped a little system to
recompile and rebuild individual
modules on the fly

○ Effectively allows me to use D as my
scripting language for compiled code
and maximum performance

● In D we have a great option,
because I can recompile very fast
using DMD -- also have the
option to use the GDC or LDC
compilers otherwise to generate
optimized code to reload.

Hot reload with shared libraries
Note: Some care needed if you allocate in shared
libraries (Work in progress to do so safely)

Hot Reload (CPU Side) (2/2)

110

● So where this became handy
was in the little ‘callback’
system I had

○ I could trigger a RebuildAndReload
and add (or remove) callbacks to my
system to change behavior without
having to stop.

○ D’s compile times are more than fast
enough for this small project -- but I
like speed!

● I know there have also been
previous efforts with LDC2 with
@dynamicCompile traits

○ These features are certainly
appreciated, and perhaps worth
taking a further look at.

unittests for games

111

● Depending on how you
structure your game loop, you
can push each update to a
frame into some sort of queue
structure.

○ Game/Graphics events can then be
played in a unittest to simulate the
game.

○ This is a good idea!
○ Languages that have built-in

unittesting benefit quite a bit from
this!

Common Game / Graphics Concerns

112

Other “big things” - Dlang and GC

● People are afraid of Garbage Collection
○ But you get memory safety effectively for

free.
○ Allocation is just as fast as with ‘new’ or

‘malloc’
■ The scan/pause is the part that

probably needs work on the allocator.
○ You don’t have to use the garbage collector

(as previously shown)
○ It looks like high powered C++ game engines

have portions that are collected
■ Maybe someone can respond to my

tweet (Is it a GC, reference counted,
arena -- help me if you know!)

○ See more on dlang garbage collection:
https://dlang.org/blog/the-gc-series/

113

https://twitter.com/MichaelShah/status/1736695501259415873

https://dlang.org/blog/the-gc-series/
https://twitter.com/MichaelShah/status/1736695501259415873

Garbage Collection in Unreal Engine

114

● https://www.tomlooman
.com/unreal-engine-cpp
-guide/

● It’s amazing how many
developers do not know
that Unreal Engine has
Garbage Collection
available as a memory
management strategy

○ Ideally, just make sure this
does not happen in the
‘hot’ part of your code

■ (i.e. allocate
everything ahead of
time)

https://www.tomlooman.com/unreal-engine-cpp-guide/
https://www.tomlooman.com/unreal-engine-cpp-guide/
https://www.tomlooman.com/unreal-engine-cpp-guide/

Runtime Polymorphism without classes

115

● With a little bit of cleverness, I am
doing something for my callback
system similar to the tardy project.

○ (Thanks Atila!)
● Then I can basically use only structs

for everything :)
○ Atila has a nice project here I got some

ideas from!
● My interest is wanting to keep

flexibility of polymorphism, but
within the betterC subset.

○ betterC is a really neat part of the D
ecosystem -- top notch for portability
and/or embedded systems

○ https://dlang.org/spec/betterc.html
○ https://wiki.dlang.org/Generating_WebA

ssembly_with_LDC https://code.dlang.org/packages/tardy

https://dlang.org/spec/betterc.html
https://wiki.dlang.org/Generating_WebAssembly_with_LDC
https://wiki.dlang.org/Generating_WebAssembly_with_LDC
https://code.dlang.org/packages/tardy

betterC

116

● If you don’t want the
language run-time and
standard library, you can
use the ‘betterC’ mode to
disable them.

https://dlang.org/spec/betterc.html

https://dlang.org/spec/betterc.html

A Few Other Things Handy Things (1/4)

117

● Post condition and ‘invariant’ have been useful constructs in my
code for early exit

○ e.g.
■ Checking for NaN and ensure we are always in a good state after vector

operations.
■ Anytime I am creating unit Vectors (and I do so frequently) -- it’s good to not

divide by 0!
○ https://dlang.org/spec/contracts.html

https://dlang.org/spec/contracts.html

A Few Other Things Handy Things (2/4)

118

● Easy to template code
○ Able to make function templates to eliminate branches in code (i.e. which shader

type to compile at run-time
■ Instead make a templated function
■ Also can apply a ‘template constraint’ to avoid illegal types from being

created
● Enforced at compile-time, again so you don’t have to pay the cost if you

compile your shaders at run-time.

A Few Other Things Handy Things (3/4)

119

● In many places where I have enums in OpenGL, I can template them
away -- often making my codebase more robust.

○ Code can be self-documenting for what ‘enum’ types are legal
○ (i.e. Use a function as a template constraint to check valid enums)

A Few Other Things Handy Things (4/4)

120

● Associative arrays are
built-in to the D
language

● It’s quite common for
me to map a ‘string’ to
an ‘id’ so that I can refer
to things in a readable
manner in my code (and
print better error
messages!).

Learning More About the D Language

121

Further Understanding the Case for Dlang

● In 2020 the ACM’s History
of Programming
Languages (HOPL) had an
article published by
Walter, Andrei, and Mike
Parker to understand the
origins of the language

○ I would encourage D
programmers and
newcomers to read the
article which motivates the
language and the ‘why’
behind its design decision.

122

https://dl.acm.org/doi//10.1145/3386323

https://dl.acm.org/doi/abs/10.1145/3386323

Further resources and training materials

123

● Tons of talks by others (Games, graphics, servers, etc.)
○ https://wiki.dlang.org/Videos#Tutorials

● My ‘Graphics Related’ talks on Ray Tracers
○ DConf '22: Ray Tracing in (Less Than) One Weekend with DLang -- Mike Shah

■ https://www.youtube.com/watch?v=nCIB8df7q2g
○ DConf Online '22 - Engineering a Ray Tracer on the Next Weekend with DLang

■ https://www.youtube.com/watch?v=MFhTRiobWfU
● All of my other conference talks (many related to D)

○ http://tinyurl.com/mike-talks

https://wiki.dlang.org/Videos#Tutorials
https://www.youtube.com/watch?v=nCIB8df7q2g
https://www.youtube.com/watch?v=MFhTRiobWfU
http://tinyurl.com/mike-talks

Vulkan

● Most folks will probably point you to Vulkan as a modern graphics
API to learn

○ They are probably right -- as Vulkan allows you to create pipelines that execute
much better concurrently.

○ D has several bindings to Vulkan that you can start using today

124

The D language tour

● Nice set of online
tutorials that you can
work through in 1 day

○ Found directly on the D
language website under
‘Learn’

125

https://tour.dlang.org/

https://tour.dlang.org/

Summary

126

● I hope you have enjoyed learning a bit about the D programming
language

○ It integrates well with other tools (renderdoc, gdb) and programming skills (e.g. C
or C++) you already have!

● I hope you otherwise may try to expand your horizons and try out a
new language in your respective domain -- see if it gives you a
competitive advantage, or otherwise improves your skills as an
engineer!

127127

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

14:00 - 15:30 Tue, April 1, 2025

90 minutes | Introductory Audience

 Thank you ACCU 2025!

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Thank you!

128

